Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1126/science.373.6554.478 |
Huge protein structure database could transform biology | |
Robert F. Service | |
2021-07-30 | |
发表期刊 | Science
![]() |
出版年 | 2021 |
英文摘要 | Earlier this month, two groups unveiled the culmination of years of work by computer scientists, biologists, and physicists: advanced modeling programs that can predict the precise 3D atomic structures of proteins. Last week, the biggest payoff of that work arrived. One team used its newly minted artificial intelligence (AI) programs to solve the structures of 350,000 proteins from humans and 20 model organisms, such as Escherichia coli bacteria, yeast, and fruit flies, all mainstays of biological research. In the coming months, the group says it plans to expand its efforts to all cataloged proteins—some 100 million molecules. “It's pretty overwhelming,” says John Moult, a protein folding expert at the University of Maryland, Shady Grove, who runs a biennial competition called the Critical Assessment of protein Structure Prediction (CASP). Moult says structural biologists have dreamed for decades that accurate computer models would one day augment slow, painstaking experimental methods, such as x-ray crystallography, that map protein shapes with extreme precision. “I never thought the dream would come true,” Moult says. The computer model, called AlphaFold, is the work of researchers at DeepMind, a U.K. AI company owned by Alphabet, the parent company of Google. In fall of 2020, AlphaFold swept the CASP competition, tallying a median accuracy score of 92.4 out of 100 for its predicted structures, well ahead of the next closest competitor ( Science , 4 December 2020, p. [1144][1]). But because DeepMind researchers didn't reveal AlphaFold's underlying computer code, other teams were left frustrated, unable to build on the progress. That began to change this month ( Science , 16 July, p. [262][2]). On 15 July, researchers led by Minkyung Baek and David Baker at the University of Washington, Seattle, reported online in Science that they had created a competing system: a highly accurate protein structure prediction program called RoseTTAFold, which they released publicly. The same day, Nature rushed out details of AlphaFold in a paper by DeepMind researchers led by Demis Hassabis and John Jumper. Both programs use AI to spot folding patterns in vast databases of solved protein structures. The programs compute the most likely structure of unknown proteins by applying those patterns and also considering basic physical and biological rules governing how neighboring amino acids in a protein interact. In their paper, Baek and Baker used RoseTTAFold to create a structure database of hundreds of G-protein coupled receptors, a class of common drug targets. Now, DeepMind researchers report in Nature that they have amassed 350,000 predicted structures—more than twice as many as experimenters have solved in many decades of work. AlphaFold's structures for which the researchers say they have high confidence cover nearly 44% of all human proteins. AlphaFold determined that many of the remaining human proteins were “disordered,” meaning their shape doesn't adopt a single structure. Such disordered proteins may ultimately adopt a structure when they bind to a protein partner, Baker says. They may also naturally adopt multiple conformations, says David Agard, a structural biologist at the University of California, San Francisco. A database of DeepMind's new protein predictions, assembled with collaborators at the European Molecular Biology Laboratory (EMBL), is freely accessible online. “It's fantastic they have made this available,” Baker says. “It will really increase the pace of research.” Because the 3D structure of a protein largely dictates its function, the DeepMind library is apt to help biologists sort out how thousands of unknown proteins do their jobs. “We at EMBL believe this will be transformative to understanding how life works,” says the lab's director general, Edith Heard. “This will be one of the most important data sets since the mapping of the human genome,” adds Ewan Birney, director of EMBL's European Bioinformatics Institute. DeepMind collaborators say that by making it possible to quickly assess how a change in a protein's sequence alters its structure and function, AlphaFold has already spurred the development of novel enzymes for breaking down plastic waste. It has also prompted efforts to better target parasitic diseases. The impacts aren't likely to stop there. The predictions will help experimentalists who solve structures, Baek says. Data from x-ray crystallography and cryo–electron microscopy experiments can be difficult to interpret, Baek and others say, and having a model can help pinpoint the correct structure. “In the short term, it will boost structure determination efforts,” she predicts. “And over time it will also slowly replace [experimental] structural determination efforts.” If that happens, structural biologists won't find themselves out of work. Baker notes that both experimental and computational scientists are already beginning to turn their efforts to the more complex challenge of understanding exactly which proteins interact with one another and what molecular changes happen during these interactions. The new tools will “reset the field,” Baker says. “It's a very exciting time.” [1]: http://www.sciencemag.org/content/370/6521/1144 [2]: http://www.sciencemag.org/content/373/6552/262 |
领域 | 气候变化 ; 资源环境 |
URL | 查看原文 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/335517 |
专题 | 气候变化 资源环境科学 |
推荐引用方式 GB/T 7714 | Robert F. Service. Huge protein structure database could transform biology[J]. Science,2021. |
APA | Robert F. Service.(2021).Huge protein structure database could transform biology.Science. |
MLA | Robert F. Service."Huge protein structure database could transform biology".Science (2021). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Robert F. Service]的文章 |
百度学术 |
百度学术中相似的文章 |
[Robert F. Service]的文章 |
必应学术 |
必应学术中相似的文章 |
[Robert F. Service]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论