GSTDTAP  > 资源环境科学
DOI10.1029/2021WR030313
Bayesian inversion of multi-Gaussian log-conductivity fields with uncertain hyperparameters: an extension of preconditioned Crank-Nicolson Markov chain Monte Carlo with parallel tempering
Sinan Xiao; Teng Xu; Sebastian Reuschen; Wolfgang Nowak; Harrie-Jan Hendricks Franssen
2021-08-15
发表期刊Water Resources Research
出版年2021
英文摘要

In conventional Bayesian geostatistical inversion, specific values of hyperparameters characterizing the prior distribution of random fields are required. However, these hyperparameters are typically very uncertain in practice. Thus, it is more appropriate to consider the uncertainty of hyperparameters as well. The preconditioned Crank-Nicolson Markov chain Monte Carlo with parallel tempering (pCN-PT) has been used to efficiently solve the conventional Bayesian inversion of high-dimensional multi-Gaussian random fields. In this paper, we extend pCN-PT to Bayesian inversion with uncertain hyperparameters of multi-Gaussian fields. To utilize the dimension robustness of the preconditioned Crank-Nicolson algorithm, we reconstruct the problem by decomposing the random field into hyperparameters and white noise. Then, we apply pCN-PT with a Gibbs split to this “new” problem to obtain the posterior samples of hyperparameters and white noise, and further recover the posterior samples of spatially distributed model parameters. Finally, we apply the extended pCN-PT method for estimating a finely resolved multi-Gaussian log-hydraulic conductivity field from direct data and from head data to show its effectiveness. Results indicate that the estimation of hyperparameters with hydraulic head data is very challenging and the posterior distributions of hyperparameters are only slightly narrower than the prior distributions. Direct measurements of hydraulic conductivity are needed to narrow more the posterior distribution of hyperparameters. To the best of our knowledge, this is a first accurate and fully linearization free solution to Bayesian multi-Gaussian geostatistical inversion with uncertain hyperparameters.

This article is protected by copyright. All rights reserved.

领域资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/335803
专题资源环境科学
推荐引用方式
GB/T 7714
Sinan Xiao,Teng Xu,Sebastian Reuschen,et al. Bayesian inversion of multi-Gaussian log-conductivity fields with uncertain hyperparameters: an extension of preconditioned Crank-Nicolson Markov chain Monte Carlo with parallel tempering[J]. Water Resources Research,2021.
APA Sinan Xiao,Teng Xu,Sebastian Reuschen,Wolfgang Nowak,&Harrie-Jan Hendricks Franssen.(2021).Bayesian inversion of multi-Gaussian log-conductivity fields with uncertain hyperparameters: an extension of preconditioned Crank-Nicolson Markov chain Monte Carlo with parallel tempering.Water Resources Research.
MLA Sinan Xiao,et al."Bayesian inversion of multi-Gaussian log-conductivity fields with uncertain hyperparameters: an extension of preconditioned Crank-Nicolson Markov chain Monte Carlo with parallel tempering".Water Resources Research (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sinan Xiao]的文章
[Teng Xu]的文章
[Sebastian Reuschen]的文章
百度学术
百度学术中相似的文章
[Sinan Xiao]的文章
[Teng Xu]的文章
[Sebastian Reuschen]的文章
必应学术
必应学术中相似的文章
[Sinan Xiao]的文章
[Teng Xu]的文章
[Sebastian Reuschen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。