GSTDTAP  > 资源环境科学
DOI10.1016/j.tree.2021.08.008
Causal assumptions and causal inference in ecological experiments
Kaitlin Kimmel:Laura E. Dee:Meghan L. Avolio:Paul J. Ferraro
2021-09-15
发表期刊Trends in Ecology & Evolution\
出版年2021
英文摘要Causal inferences from experimental data are often justified based on treatment randomization. However, inferring causality from data also requires complementary causal assumptions, which have been formalized by scholars of causality but not widely discussed in ecology. While ecologists have recognized challenges to inferring causal relationships in experiments and developed solutions, they lack a general framework to identify and address them. We review four assumptions required to infer causality from experiments and provide design-based and statistically based solutions for when these assumptions are violated.
领域资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/338909
专题资源环境科学
推荐引用方式
GB/T 7714
Kaitlin Kimmel:Laura E. Dee:Meghan L. Avolio:Paul J. Ferraro. Causal assumptions and causal inference in ecological experiments[J]. Trends in Ecology & Evolution\,2021.
APA Kaitlin Kimmel:Laura E. Dee:Meghan L. Avolio:Paul J. Ferraro.(2021).Causal assumptions and causal inference in ecological experiments.Trends in Ecology & Evolution\.
MLA Kaitlin Kimmel:Laura E. Dee:Meghan L. Avolio:Paul J. Ferraro."Causal assumptions and causal inference in ecological experiments".Trends in Ecology & Evolution\ (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kaitlin Kimmel:Laura E. Dee:Meghan L. Avolio:Paul J. Ferraro]的文章
百度学术
百度学术中相似的文章
[Kaitlin Kimmel:Laura E. Dee:Meghan L. Avolio:Paul J. Ferraro]的文章
必应学术
必应学术中相似的文章
[Kaitlin Kimmel:Laura E. Dee:Meghan L. Avolio:Paul J. Ferraro]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。