GSTDTAP  > 地球科学
Soil Moisture Retrieval Using Polarimetric SAR Data and Experimental Observations in an Arid Environment
Gharechelou, Saeid; Tateishi, Ryutaro; Sumantyo, Josaphat; Johnson, Brian
2021-10-19
出版年2021
国家日本
领域地球科学
英文摘要

Soil moisture is a critical component for Earth science studies, and Synthetic Aperture Radar (SAR) data have high potential for retrieving soil moisture using backscattering models. In this study, polarimetric SAR (PALSAR: Phased Array type L-band Synthetic Aperture Radar) data and polarimetric decompositions including span, entropy/H/alpha, and anisotropy, in combination with surface properties resulting from field and laboratory measurements, are used to categorize the natural surface condition and discriminate the backscatter parameter in the test site for applying the inversion soil moisture retrieval. The work aims to introduce the better of two examined models in the research for soil moisture retrieval over the bare land and sparse vegetation in arid regions. After soil moisture retrieval using the two different models, the results of comparison and validation by field measurement of soil moisture have shown that the Oh model has a more realiable accuracy for soil moisture mapping, although it was very difficult to find the best model due to different characteristics in land cover. It seems the inversion model, with the field observation and polarimetric SAR data, has a good potential for extracting surface natural conditions such as surface roughness and soil moisture; however, over- and under-estimation are observed due to land cover variability. The estimation of accurate roughness and moisture data for each type of land cover can increase the accuracy of the results.

URL查看原文
来源平台Institute for Global Environmental Strategies
文献类型科技报告
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/341368
专题地球科学
推荐引用方式
GB/T 7714
Gharechelou, Saeid,Tateishi, Ryutaro,Sumantyo, Josaphat,et al. Soil Moisture Retrieval Using Polarimetric SAR Data and Experimental Observations in an Arid Environment,2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gharechelou, Saeid]的文章
[Tateishi, Ryutaro]的文章
[Sumantyo, Josaphat]的文章
百度学术
百度学术中相似的文章
[Gharechelou, Saeid]的文章
[Tateishi, Ryutaro]的文章
[Sumantyo, Josaphat]的文章
必应学术
必应学术中相似的文章
[Gharechelou, Saeid]的文章
[Tateishi, Ryutaro]的文章
[Sumantyo, Josaphat]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。