Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.5194/acp-2022-433 |
Supercooled liquid water clouds observed over Dome C, Antarctica: temperature sensitivity and surface radiation impact | |
Philippe Ricaud, Massimo Del Guasta, Angelo Lupi, Romain Roehrig, Eric Bazile, Pierre Durand, Jean-Luc Attié, Alessia Nicosia, and Paolo Grigioni | |
2022-06-28 | |
发表期刊 | Atmospheric Chemistry and Physics
![]() |
出版年 | 2022 |
英文摘要 | Abstract. Clouds affect the Earth climate with an impact that depends on the cloud nature (solid/ liquid water). Although the Antarctic climate is changing rapidly, cloud observations are sparse over Antarctica due to few ground stations and satellite observations. The Concordia station is located on the East Antarctic Plateau (75° S, 123° E, 3233 m above mean sea level), one of the driest and coldest places on Earth. We used observations of clouds, temperature, liquid water and surface radiation performed at Concordia during 4 austral summers (December 2018–2021) to analyze the link between liquid water and temperature and its impact on surface radiation in the presence of supercooled liquid water (liquid water for temperature less than 0 °C) clouds (SLWCs). Our analysis shows that, within SLWCs, temperature logarithmically increases from -36.0 °C to -16.0 °C when liquid water path increases from 1.0 to 14.0 g m-2, and SLWCs positively impact the net surface radiation, which logarithmically increases by 0.0 to 50.0 W m-2 when liquid water path increases from 1.7 to 3.0 g m-2. We finally estimate that SLWCs have a great potential radiative impact over Antarctica whatever the season considered, up to 5.0 W m-2 over the Eastern Antarctic Plateau and up to 30 W m-2 over the Antarctic Peninsula in summer. |
领域 | 地球科学 |
URL | 查看原文 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/352941 |
专题 | 地球科学 |
推荐引用方式 GB/T 7714 | Philippe Ricaud, Massimo Del Guasta, Angelo Lupi, Romain Roehrig, Eric Bazile, Pierre Durand, Jean-Luc Attié, Alessia Nicosia, and Paolo Grigioni. Supercooled liquid water clouds observed over Dome C, Antarctica: temperature sensitivity and surface radiation impact[J]. Atmospheric Chemistry and Physics,2022. |
APA | Philippe Ricaud, Massimo Del Guasta, Angelo Lupi, Romain Roehrig, Eric Bazile, Pierre Durand, Jean-Luc Attié, Alessia Nicosia, and Paolo Grigioni.(2022).Supercooled liquid water clouds observed over Dome C, Antarctica: temperature sensitivity and surface radiation impact.Atmospheric Chemistry and Physics. |
MLA | Philippe Ricaud, Massimo Del Guasta, Angelo Lupi, Romain Roehrig, Eric Bazile, Pierre Durand, Jean-Luc Attié, Alessia Nicosia, and Paolo Grigioni."Supercooled liquid water clouds observed over Dome C, Antarctica: temperature sensitivity and surface radiation impact".Atmospheric Chemistry and Physics (2022). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论