GSTDTAP  > 气候变化
DOI10.1007/s00382-017-3920-6
The application of nonlinear local Lyapunov vectors to the Zebiak-Cane model and their performance in ensemble prediction
Hou, Zhaolu1,2; Li, Jianping3,4,5; Ding, Ruiqiang1,6; Feng, Jie7; Duan, Wansuo1
2018-07-01
发表期刊CLIMATE DYNAMICS
ISSN0930-7575
EISSN1432-0894
出版年2018
卷号51页码:283-304
文章类型Article
语种英语
国家Peoples R China; USA
英文摘要

Nonlinear local Lyapunov vectors (NLLVs) are the nonlinear extension of the Lyapunov vectors (LVs) based on linear error growth theory. As a development of bred vectors (BVs), NLLVs retain the time-saving, simply-applied and flow-dependent advantages of BVs. However, unlike BVs, NLLVs correspond not only to the leading LV but also to other orthogonal LVs. In this paper, NLLVs are applied to the Zebiak-Cane (ZC) coupled model. First, using the analysis data from the ensemble Kalman filter, we explore the effect of the parameters of the breeding process on calculating the NLLVs. It is found that the statistical properties of NLLVs are not very sensitive to the breeding parameters. However, the higher NLLVs (i.e., excluding NLLV1) show temporal randomness. Then, we study the characteristics of the spatial structures and growth rates of different NLLVs. The different NLLVs each have a certain probability of being the fastest error growth direction and together construct the error growth subspace of the ZC model. Compared with BVs, the NLLVs have some advantages in terms of the relationship between the generated error growth subspace and the analysis errors. The NLLVs also have higher local dimensionality than the BVs. NLLVs, as initial ensemble perturbations, are applied to the ensemble prediction of ENSO in a perfect environment. Compared with the results obtained using ensembles employing the random perturbation technique and the BV method, the present results demonstrate the advantages of using the NLLV method in ensemble forecasts.


领域气候变化
收录类别SCI-E
WOS记录号WOS:000435522000017
WOS关键词SEA-SURFACE TEMPERATURE ; TEMPORAL-SPATIAL DISTRIBUTION ; OCEAN DATA ASSIMILATION ; BRED VECTORS ; KALMAN FILTER ; EL-NINO ; ENSO PREDICTION ; COUPLED MODEL ; ADAPTIVE OBSERVATIONS ; PREDICTABILITY LIMIT
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/36037
专题气候变化
作者单位1.Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 10029, Peoples R China;
2.Univ Chinese Acad Sci, Coll Earth Sci, Beijing 10049, Peoples R China;
3.Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China;
4.Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing 100875, Peoples R China;
5.Qingdao Natl Lab Marine Sci & Technol, Lab Reg Oceanog & Numer Modeling, Qingdao 266237, Peoples R China;
6.Chengdu Univ Informat Technol, Coll Atmospher Sci, Plateau Atmosphere & Environm Key Lab Sichuan Pro, Chengdu 610225, Sichuan, Peoples R China;
7.NOAA, Global Syst Div, Earth Syst Res Lab, Ocean & Atmospher Res, Boulder, CO USA
推荐引用方式
GB/T 7714
Hou, Zhaolu,Li, Jianping,Ding, Ruiqiang,et al. The application of nonlinear local Lyapunov vectors to the Zebiak-Cane model and their performance in ensemble prediction[J]. CLIMATE DYNAMICS,2018,51:283-304.
APA Hou, Zhaolu,Li, Jianping,Ding, Ruiqiang,Feng, Jie,&Duan, Wansuo.(2018).The application of nonlinear local Lyapunov vectors to the Zebiak-Cane model and their performance in ensemble prediction.CLIMATE DYNAMICS,51,283-304.
MLA Hou, Zhaolu,et al."The application of nonlinear local Lyapunov vectors to the Zebiak-Cane model and their performance in ensemble prediction".CLIMATE DYNAMICS 51(2018):283-304.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hou, Zhaolu]的文章
[Li, Jianping]的文章
[Ding, Ruiqiang]的文章
百度学术
百度学术中相似的文章
[Hou, Zhaolu]的文章
[Li, Jianping]的文章
[Ding, Ruiqiang]的文章
必应学术
必应学术中相似的文章
[Hou, Zhaolu]的文章
[Li, Jianping]的文章
[Ding, Ruiqiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。