GSTDTAP  > 气候变化
DOI10.1002/joc.5897
Comparison of statistical and dynamical downscaling methods for seasonal-scale winter precipitation predictions over north India
Tiwari, P. R.1; Kar, S. C.2; Mohanty, U. C.3; Dey, S.4; Sinha, P.3; Shekhar, M. S.5; Sokhi, R. S.1
2019-03-15
发表期刊INTERNATIONAL JOURNAL OF CLIMATOLOGY
ISSN0899-8418
EISSN1097-0088
出版年2019
卷号39期号:3页码:1504-1516
文章类型Article
语种英语
国家England; India
英文摘要

The main aim of the present study is to analyse the capabilities of two downscaling approaches (statistical and dynamical) in predicting wintertime seasonal precipitation over north India. For this purpose, a canonical correlation analysis (CCA) based statistical downscaling approach and dynamical downscaling approach (at 30 km) with an optimized configuration of the regional climate model (RegCM) nested in coarse resolution global spectral model have been used for a period of 28 years (1982-2009). For CCA, nine predictors (precipitation, zonal and meridional winds at 850 and 200 hPa, temperature at 200 hPa and sea surface temperatures) over three different domains were selected. The predictors were chosen based on the statistically significant teleconnection maps and physically based relationships between precipitation over the study region and meteorological variables. The validation revealed that both the downscaling approaches provided improved precipitation forecasts compared to the global model. Reasons for improved prediction by downscaling techniques have been examined. The improvement mainly comes due to better representation of orography, westerly moisture transport and vertical pressure velocity in the regional climate model. Furthermore, two bias correction methods namely quantile mapping (QM) and mean bias-remove (MBR) have been applied on downscaled RegCM, statistically downscaled CCA as well as the global model products. It was found that when the QM-based bias correction is applied on dynamically downscaled RegCM products, it has better skill in predicting wintertime precipitation over the study region compared to the CCA-based statistical downscaling. Overall, the results indicate that the QM-based bias-corrected downscaled RegCM model is a useful tool for wintertime seasonal-scale precipitation prediction over north India.


英文关键词bias correction CCA downscaling north India RegCM winter precipitation
领域气候变化
收录类别SCI-E
WOS记录号WOS:000461606600025
WOS关键词MONSOON RAINFALL ; TEMPERATURE ; SENSITIVITY ; PERFORMANCE ; SIMULATION ; FORECAST ; MODELS ; IMPACT ; SKILL
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/37249
专题气候变化
作者单位1.Ctr Atmospher & Climate Phys Res, Hatfield, Herts, England;
2.Natl Ctr Medium Range Weather Forecasting, Noida, India;
3.IIT Bhubaneswar, Sch Earth Ocean & Climate Sci, Bhubaneswar, India;
4.IIT Delhi, Ctr Atmospher Sci, Delhi, India;
5.Snow & Avalanche Study Estab, Chandigarh, India
推荐引用方式
GB/T 7714
Tiwari, P. R.,Kar, S. C.,Mohanty, U. C.,et al. Comparison of statistical and dynamical downscaling methods for seasonal-scale winter precipitation predictions over north India[J]. INTERNATIONAL JOURNAL OF CLIMATOLOGY,2019,39(3):1504-1516.
APA Tiwari, P. R..,Kar, S. C..,Mohanty, U. C..,Dey, S..,Sinha, P..,...&Sokhi, R. S..(2019).Comparison of statistical and dynamical downscaling methods for seasonal-scale winter precipitation predictions over north India.INTERNATIONAL JOURNAL OF CLIMATOLOGY,39(3),1504-1516.
MLA Tiwari, P. R.,et al."Comparison of statistical and dynamical downscaling methods for seasonal-scale winter precipitation predictions over north India".INTERNATIONAL JOURNAL OF CLIMATOLOGY 39.3(2019):1504-1516.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tiwari, P. R.]的文章
[Kar, S. C.]的文章
[Mohanty, U. C.]的文章
百度学术
百度学术中相似的文章
[Tiwari, P. R.]的文章
[Kar, S. C.]的文章
[Mohanty, U. C.]的文章
必应学术
必应学术中相似的文章
[Tiwari, P. R.]的文章
[Kar, S. C.]的文章
[Mohanty, U. C.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。