Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1088/1748-9326/aab863 |
Tundra shrub effects on growing season energy and carbon dioxide exchange | |
Lafleur, Peter M.1; Humphreys, Elyn R.2 | |
2018-05-01 | |
发表期刊 | ENVIRONMENTAL RESEARCH LETTERS
![]() |
ISSN | 1748-9326 |
出版年 | 2018 |
卷号 | 13期号:5 |
文章类型 | Article |
语种 | 英语 |
国家 | Canada |
英文摘要 | Increased shrub cover on the Arctic tundra is expected to impact ecosystem-atmosphere exchanges of carbon and energy resulting in feedbacks to the climate system, yet few direct measurements of shrub tundra-atmosphere exchanges are available to corroborate expectations. Here we present energy and carbon dioxide (CO2) fluxes measured using the eddy covariance technique over six growing seasons at three closely located tundra sites in Canada's Low Arctic. The sites are dominated by the tundra shrub Betula glandulosa, but percent cover varies from 17%-60% and average shrub height ranges from 18-59 cm among sites. The site with greatest percent cover and height had greater snow accumulation, but contrary to some expectations, it had similar late-winter albedo and snow melt dates compared to the other two sites. Immediately after snowmelt latent heat fluxes increased more slowly at this site compared to the others. Yet by the end of the growing season there was little difference in cumulative latent heat flux among the sites, suggesting evapotranspiration was not increased with greater shrub cover. In contrast, lower albedo and less soil thaw contributed to greater summer sensible heat flux at the site with greatest shrub cover, resulting in greater total atmospheric heating. Net ecosystem exchange of CO2 revealed the potential for enhanced carbon cycling rates under greater shrub cover. Spring CO2 emissions were greatest at the site with greatest percent cover of shrubs, as was summer net uptake of CO2. The seasonal net sink for CO2 was similar to 2 times larger at the site with the greatest shrub cover compared to the site with the least shrub cover. These results largely agree with expectations that the growing season feedback to the atmosphere arising from shrub expansion in the Arctic has the potential to be negative for CO2 fluxes but positive for turbulent energy fluxes. |
英文关键词 | Arctic tundra tundra-atmopshere interaction carbon cycle energy balance shrub cover Arctic change eddy covariance |
领域 | 气候变化 |
收录类别 | SCI-E |
WOS记录号 | WOS:000431146300001 |
WOS关键词 | ARCTIC VEGETATION ; WATER-VAPOR ; CO2 FLUX ; SCALE VARIABILITY ; NORTHERN ALASKA ; CLIMATE-CHANGE ; SOIL ; HEAT ; ECOSYSTEMS ; FEEDBACKS |
WOS类目 | Environmental Sciences ; Meteorology & Atmospheric Sciences |
WOS研究方向 | Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/37578 |
专题 | 气候变化 |
作者单位 | 1.Trent Univ, Sch Environm, 1600 Westbank Dr, Peterborough, ON K9L 0G2, Canada; 2.Carleton Univ, Dept Geog & Environm Studies, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada |
推荐引用方式 GB/T 7714 | Lafleur, Peter M.,Humphreys, Elyn R.. Tundra shrub effects on growing season energy and carbon dioxide exchange[J]. ENVIRONMENTAL RESEARCH LETTERS,2018,13(5). |
APA | Lafleur, Peter M.,&Humphreys, Elyn R..(2018).Tundra shrub effects on growing season energy and carbon dioxide exchange.ENVIRONMENTAL RESEARCH LETTERS,13(5). |
MLA | Lafleur, Peter M.,et al."Tundra shrub effects on growing season energy and carbon dioxide exchange".ENVIRONMENTAL RESEARCH LETTERS 13.5(2018). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论