GSTDTAP  > 地球科学
DOI10.1016/j.atmosres.2018.05.001
Improvement of rainfall estimation from MSG data using Random Forests classification and regression
Ouallouche, Fethi; Lazri, Mourad; Ameur, Soltane
2018-10-01
发表期刊ATMOSPHERIC RESEARCH
ISSN0169-8095
EISSN1873-2895
出版年2018
卷号211页码:62-72
文章类型Article
语种英语
国家Algeria
英文摘要

In this study, a new rainfall estimation technique on 3 h and 24 h scales applied in Northern Algeria is presented. The proposed technique is based on Random Forests (RF) algorithm using data retrieved from Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI). Because the rain rate depended on the precipitation type: convective or stratiform, the RF technique is divided into two stages. The first is the classification of rainfall into three classes (no-rain, convective and stratiform) using RF classification and the second consists in assigning rain rate to the pixels belonging to the two classes (convective and stratiform) using RF regression.


In classification step, spectral, textural and temporal features of clouds are used as predictor variables and the results are validated against co-located rainfall classes observed by radar. The statistical parameters score shows stronger rainfall classification performance for RF compared to the ANN and SVM.


The RF regression model is validated by comparison with against co-located rainfall rates measured by a rain gauge. The results show rain rates estimated by the developed scheme are in good correlation with those observed by rain gauges.


英文关键词Rainfall estimation Learning machine Random Forest (RF) Meteosat Second Generation (MSG)
领域地球科学
收录类别SCI-E
WOS记录号WOS:000436224300007
WOS关键词SUPPORT VECTOR MACHINES ; ARTIFICIAL NEURAL-NETWORK ; LAND-COVER CLASSIFICATION ; NON-RAINING CLOUDS ; TEXTURAL FEATURES ; SATELLITE DATA ; PRECIPITATION ; SEVIRI ; RETRIEVAL ; MIDLATITUDES
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/37975
专题地球科学
作者单位Mouloud MAMMERI Univ Tizi Ouzou, LAMPA Lab, Lab Anal & Modelisat Phenomenes Aleatoires, Tizi Ouzou, Algeria
推荐引用方式
GB/T 7714
Ouallouche, Fethi,Lazri, Mourad,Ameur, Soltane. Improvement of rainfall estimation from MSG data using Random Forests classification and regression[J]. ATMOSPHERIC RESEARCH,2018,211:62-72.
APA Ouallouche, Fethi,Lazri, Mourad,&Ameur, Soltane.(2018).Improvement of rainfall estimation from MSG data using Random Forests classification and regression.ATMOSPHERIC RESEARCH,211,62-72.
MLA Ouallouche, Fethi,et al."Improvement of rainfall estimation from MSG data using Random Forests classification and regression".ATMOSPHERIC RESEARCH 211(2018):62-72.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ouallouche, Fethi]的文章
[Lazri, Mourad]的文章
[Ameur, Soltane]的文章
百度学术
百度学术中相似的文章
[Ouallouche, Fethi]的文章
[Lazri, Mourad]的文章
[Ameur, Soltane]的文章
必应学术
必应学术中相似的文章
[Ouallouche, Fethi]的文章
[Lazri, Mourad]的文章
[Ameur, Soltane]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。