GSTDTAP

浏览/检索结果: 共22条,第1-10条 帮助

限定条件                            
已选(0)清除 条数/页:   排序方式:
Abrupt increase in harvested forest area over Europe after 2015 期刊论文
NATURE, 2020, 583 (7814) : 72-+
作者:  Guido Ceccherini;  Gregory Duveiller;  Giacomo Grassi;  Guido Lemoine;  Valerio Avitabile;  Roberto Pilli;  Alessandro Cescatti
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/06

Fine-scale satellite data are used to quantify forest harvest rates in 26 European countries, finding an increase in harvested forest area of 49% and an increase in biomass loss of 69% between 2011-2015 and 2016-2018.


Forests provide a series of ecosystem services that are crucial to our society. In the European Union (EU), forests account for approximately 38% of the total land surface(1). These forests are important carbon sinks, and their conservation efforts are vital for the EU'  s vision of achieving climate neutrality by 2050(2). However, the increasing demand for forest services and products, driven by the bioeconomy, poses challenges for sustainable forest management. Here we use fine-scale satellite data to observe an increase in the harvested forest area (49 per cent) and an increase in biomass loss (69 per cent) over Europe for the period of 2016-2018 relative to 2011-2015, with large losses occurring on the Iberian Peninsula and in the Nordic and Baltic countries. Satellite imagery further reveals that the average patch size of harvested area increased by 34 per cent across Europe, with potential effects on biodiversity, soil erosion and water regulation. The increase in the rate of forest harvest is the result of the recent expansion of wood markets, as suggested by econometric indicators on forestry, wood-based bioenergy and international trade. If such a high rate of forest harvest continues, the post-2020 EU vision of forest-based climate mitigation may be hampered, and the additional carbon losses from forests would require extra emission reductions in other sectors in order to reach climate neutrality by 2050(3).


  
A cold, massive, rotating disk galaxy 1.5 billion years after the Big Bang 期刊论文
NATURE, 2020, 581 (7808) : 269-+
作者:  Poplawski, Gunnar H. D.;  Kawaguchi, Riki;  Van Niekerk, Erna;  Lu, Paul;  Mehta, Neil;  Canete, Philip;  Lie, Richard;  Dragatsis, Ioannis;  Meves, Jessica M.;  Zheng, Binhai;  Coppola, Giovanni;  Tuszynski, Mark H.
收藏  |  浏览/下载:59/0  |  提交时间:2020/07/03

Massive disk galaxies like the Milky Way are expected to form at late times in traditional models of galaxy formation(1,2), but recent numerical simulations suggest that such galaxies could form as early as a billion years after the Big Bang through the accretion of cold material and mergers(3,4). Observationally, it has been difficult to identify disk galaxies in emission at high redshift(5,6) in order to discern between competing models of galaxy formation. Here we report imaging, with a resolution of about 1.3 kiloparsecs, of the 158-micrometre emission line from singly ionized carbon, the far-infrared dust continuum and the near-ultraviolet continuum emission from a galaxy at a redshift of 4.2603, identified by detecting its absorption of quasar light. These observations show that the emission arises from gas inside a cold, dusty, rotating disk with a rotational velocity of about 272 kilometres per second. The detection of emission from carbon monoxide in the galaxy yields a molecular mass that is consistent with the estimate from the ionized carbon emission of about 72 billion solar masses. The existence of such a massive, rotationally supported, cold disk galaxy when the Universe was only 1.5 billion years old favours formation through either cold-mode accretion or mergers, although its large rotational velocity and large content of cold gas remain challenging to reproduce with most numerical simulations(7,8).


A massive rotating disk galaxy was formed a mere 1.5 billion years after the Big Bang, a surprisingly short time after the origin of the Universe.


  
The fate of carbon in a mature forest under carbon dioxide enrichment 期刊论文
NATURE, 2020, 580 (7802) : 227-+
作者:  Sun, P. Z.;  Yang, Q.;  Kuang, W. J.;  Stebunov, Y. V.;  Xiong, W. Q.;  Yu, J.;  Nair, R. R.;  Katsnelson, M. I.;  Yuan, S. J.;  Grigorieva, I. V.;  Lozada-Hidalgo, M.;  Wang, F. C.;  Geim, A. K.
收藏  |  浏览/下载:70/0  |  提交时间:2020/05/13

Carbon dioxide enrichment of a mature forest resulted in the emission of the excess carbon back into the atmosphere via enhanced ecosystem respiration, suggesting that mature forests may be limited in their capacity to mitigate climate change.


Atmospheric carbon dioxide enrichment (eCO(2)) can enhance plant carbon uptake and growth(1-5), thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration(6). Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth(3-5), it is unclear whether mature forests respond to eCO(2) in a similar way. In mature trees and forest stands(7-10), photosynthetic uptake has been found to increase under eCO(2) without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO(2) unclear(4,5,7-11). Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO(2) exposure. We show that, although the eCO(2) treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO(2), and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.


  
Preindustrial (CH4)-C-14 indicates greater anthropogenic fossil CH4 emissions 期刊论文
NATURE, 2020, 578 (7795) : 409-+
作者:  Keener, Megan;  Hunt, Camden;  Carroll, Timothy G.;  Kampel, Vladimir;  Dobrovetsky, Roman;  Hayton, Trevor W.;  Menard, Gabriel
收藏  |  浏览/下载:25/0  |  提交时间:2020/05/13

Atmospheric methane (CH4) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era(1). Fossil fuel extraction and use are among the largest anthropogenic sources of CH4 emissions, but the precise magnitude of these contributions is a subject of debate(2,3). Carbon-14 in CH4 ((CH4)-C-14) can be used to distinguish between fossil (C-14-free) CH4 emissions and contemporaneous biogenic sources  however, poorly constrained direct (CH4)-C-14 emissions from nuclear reactors have complicated this approach since the middle of the 20th century(4,5). Moreover, the partitioning of total fossil CH4 emissions (presently 172 to 195 teragrams CH4 per year)(2,3) between anthropogenic and natural geological sources (such as seeps and mud volcanoes) is under debate  emission inventories suggest that the latter account for about 40 to 60 teragrams CH4 per year(6,7). Geological emissions were less than 15.4 teragrams CH4 per year at the end of the Pleistocene, about 11,600 years ago(8), but that period is an imperfect analogue for present-day emissions owing to the large terrestrial ice sheet cover, lower sea level and extensive permafrost. Here we use preindustrial-era ice core (CH4)-C-14 measurements to show that natural geological CH4 emissions to the atmosphere were about 1.6 teragrams CH4 per year, with a maximum of 5.4 teragrams CH4 per year (95 per cent confidence limit)-an order of magnitude lower than the currently used estimates. This result indicates that anthropogenic fossil CH4 emissions are underestimated by about 38 to 58 teragrams CH4 per year, or about 25 to 40 per cent of recent estimates. Our record highlights the human impact on the atmosphere and climate, provides a firm target for inventories of the global CH4 budget, and will help to inform strategies for targeted emission reductions(9,10).


Isotopic evidence from ice cores indicates that preindustrial-era geological methane emissions were lower than previously thought, suggesting that present-day emissions of methane from fossil fuels are underestimated.


  
What would it take for renewably powered electrosynthesis to displace petrochemical processes? 期刊论文
SCIENCE, 2019, 364 (6438) : 350-+
作者:  De Luna, Phil;  Hahn, Christopher;  Higgins, Drew;  Jaffer, Shaffiq A.;  Jaramillo, Thomas F.;  Sargent, Edward H.
收藏  |  浏览/下载:8/0  |  提交时间:2019/11/27
The Sommerfeld ground-wave limit for a molecule adsorbed at a surface 期刊论文
SCIENCE, 2019, 363 (6423) : 158-161
作者:  Chen, Li;  Lau, Jascha A.;  Schwarzer, Dirk;  Meyer, Jorg;  Verma, Varun B.;  Wodtke, Alec M.
收藏  |  浏览/下载:4/0  |  提交时间:2019/11/27
Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (18) : 8657-8666
作者:  An, Zhisheng;  Huang, Ru-Jin;  Zhang, Renyi;  Tie, Xuexi;  Li, Guohui;  Cao, Junji;  Zhou, Weijian;  Shi, Zhengguo;  Han, Yongming;  Gu, Zhaolin;  Ji, Yuemeng
收藏  |  浏览/下载:11/0  |  提交时间:2019/11/27
severe haze  synergetic effects  anthropogenic emission  atmospheric chemistry  climate change  
Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (24) : 11640-11645
作者:  Magney, Troy S.;  Bowling, David R.;  Logan, Barry A.;  Grossmann, Katja;  Stutz, Jochen;  Blanken, Peter D.;  Burns, Sean P.;  Cheng, Rui;  Garcia, Maria A.;  Kohler, Philipp;  Lopez, Sophia;  Parazoo, Nicholas C.;  Raczka, Brett;  Schimel, David;  Frankenberg, Christian
收藏  |  浏览/下载:24/0  |  提交时间:2019/11/27
solar-induced fluorescence (SIF)  remote sensing  gross primary production (GPP)  photosynthesis  evergreen forest  
Flame-formed carbon nanoparticles exhibit quantum dot behaviors 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (26) : 12692-12697
作者:  Liu, Changran;  39;Anna, Andrea
收藏  |  浏览/下载:0/0  |  提交时间:2019/11/27
carbon nanoparticles  quantum dots  flames  
Trends and patterns in the contributions to cumulative radiative forcing from different regions of the world 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (52) : 13192-13197
作者:  Murphy, D. M.;  Ravishankara, A. R.
收藏  |  浏览/下载:5/0  |  提交时间:2019/11/27
cumulative radiative forcing  aerosols  greenhouse gases  climate change  regional contributions