GSTDTAP

浏览/检索结果: 共117条,第1-10条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
Slow Modes of the Equatorial Waveguide 期刊论文
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2020, 77 (5) : 1575-1582
作者:  Emanuel, Kerry
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
Madden-Julian oscillation  Madden-Julian oscillation  Tropical variability  
Deep biogenic methane and drilling-associated gas artifacts: Influence on gas-based characterization of petroleum fluids 期刊论文
AAPG BULLETIN, 2020, 104 (4) : 887-912
作者:  Strapoc, Dariusz;  Jacquet, Benjamin;  Torres, Oscar;  Khan, Shahnawaz;  Villegas, Esra Inan;  Albrecht, Heidi;  Okoh, Bruno;  McKinney, Daniel
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/13
Dynamics of Subsiding Shells in Actively Growing Clouds with Vertical Updrafts 期刊论文
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2020, 77 (4) : 1353-1369
作者:  Nair, Vishnu;  Heus, Thijs;  van Reeuwijk, Maarten
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/02
Convection  Entrainment  Turbulence  Cumulus clouds  
Exploring dynamical phase transitions with cold atoms in an optical cavity 期刊论文
NATURE, 2020, 580 (7805) : 602-+
作者:  Halbach, Rebecca;  Miesen, Pascal;  Joosten, Joep;  Taskopru, Ezgi;  Rondeel, Inge;  Pennings, Bas;  Vogels, Chantal B. F.;  Merkling, Sarah H.;  Koenraadt, Constantianus J.;  Lambrechts, Louis;  van Rij, Ronald P.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Interactions between light and an ensemble of strontium atoms in an optical cavity can serve as a testbed for studying dynamical phase transitions, which are currently not well understood.


Interactions between atoms and light in optical cavities provide a means of investigating collective (many-body) quantum physics in controlled environments. Such ensembles of atoms in cavities have been proposed for studying collective quantum spin models, where the atomic internal levels mimic a spin degree of freedom and interact through long-range interactions tunable by changing the cavity parameters(1-4). Non-classical steady-state phases arising from the interplay between atom-light interactions and dissipation of light from the cavity have previously been investigated(5-11). These systems also offer the opportunity to study dynamical phases of matter that are precluded from existence at equilibrium but can be stabilized by driving a system out of equilibrium(12-16), as demonstrated by recent experiments(17-22). These phases can also display universal behaviours akin to standard equilibrium phase transitions(8,23,24). Here, we use an ensemble of about a million strontium-88 atoms in an optical cavity to simulate a collective Lipkin-Meshkov-Glick model(25,26), an iconic model in quantum magnetism, and report the observation of distinct dynamical phases of matter in this system. Our system allows us to probe the dependence of dynamical phase transitions on system size, initial state and other parameters. These observations can be linked to similar dynamical phases in related systems, including the Josephson effect in superfluid helium(27), or coupled atomic(28) and solid-state polariton(29) condensates. The system itself offers potential for generation of metrologically useful entangled states in optical transitions, which could permit quantum enhancement in state-of-the-art atomic clocks(30,31).


  
Feedback generates a second receptive field in neurons of the visual cortex 期刊论文
NATURE, 2020
作者:  Shi, Enzheng;  Yuan, Biao;  Shiring, Stephen B.;  Gao, Yao;  Akriti;  Guo, Yunfan;  Su, Cong;  Lai, Minliang;  Yang, Peidong;  Kong, Jing;  Savoie, Brett M.;  Yu, Yi;  Dou, Letian
收藏  |  浏览/下载:45/0  |  提交时间:2020/07/03

Animals sense the environment through pathways that link sensory organs to the brain. In the visual system, these feedforward pathways define the classical feedforward receptive field (ffRF), the area in space in which visual stimuli excite a neuron(1). The visual system also uses visual context-the visual scene surrounding a stimulus-to predict the content of the stimulus(2), and accordingly, neurons have been identified that are excited by stimuli outside their ffRF(3-8). However, the mechanisms that generate excitation to stimuli outside the ffRF are unclear. Here we show that feedback projections onto excitatory neurons in the mouse primary visual cortex generate a second receptive field that is driven by stimuli outside the ffRF. The stimulation of this feedback receptive field (fbRF) elicits responses that are slower and are delayed in comparison with those resulting from the stimulation of the ffRF. These responses are preferentially reduced by anaesthesia and by silencing higher visual areas. Feedback inputs from higher visual areas have scattered receptive fields relative to their putative targets in the primary visual cortex, which enables the generation of the fbRF. Neurons with fbRFs are located in cortical layers that receive strong feedback projections and are absent in the main input layer, which is consistent with a laminar processing hierarchy. The observation that large, uniform stimuli-which cover both the fbRF and the ffRF-suppress these responses indicates that the fbRF and the ffRF are mutually antagonistic. Whereas somatostatin-expressing inhibitory neurons are driven by these large stimuli, inhibitory neurons that express parvalbumin and vasoactive intestinal peptide have mutually antagonistic fbRF and ffRF, similar to excitatory neurons. Feedback projections may therefore enable neurons to use context to estimate information that is missing from the ffRF and to report differences in stimulus features across visual space, regardless of whether excitation occurs inside or outside the ffRF. By complementing the ffRF, the fbRF that we identify here could contribute to predictive processing.


Feedback projections onto neurons of the mouse primary visual cortex generate a second excitatory receptive field that is driven by stimuli outside of the classical feedforward receptive field, with responses mediated by higher visual areas.


  
Application of linear minimum variance estimation to the multi-model ensemble of atmospheric radioactive Cs-137 with observations 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (6) : 3589-3607
作者:  Goto, Daisuke;  Morino, Yu;  Ohara, Toshimasa;  Sekiyama, Tsuyoshi Thomas;  Uchida, Junya;  Nakajima, Teruyuki
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/02
Technical note: Fundamental aspects of ice nucleation via pore condensation and freezing including Laplace pressure and growth into macroscopic ice 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (5) : 3209-3230
作者:  Marcolli, Claudia
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/02
Operation of a silicon quantum processor unit cell above one kelvin 期刊论文
NATURE, 2020, 580 (7803) : 350-+
作者:  Han, Kyuho;  Pierce, Sarah E.;  Li, Amy;  Spees, Kaitlyn;  Anderson, Grace R.;  Seoane, Jose A.;  Lo, Yuan-Hung;  Dubreuil, Michael;  Olivas, Micah;  Kamber, Roarke A.;  Wainberg, Michael;  Kostyrko, Kaja;  Kelly, Marcus R.;  Yousefi, Maryam;  Simpkins, Scott W.;  Yao, David
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Quantum computers are expected to outperform conventional computers in several important applications, from molecular simulation to search algorithms, once they can be scaled up to large numbers-typically millions-of quantum bits (qubits)(1-3). For most solid-state qubit technologies-for example, those using superconducting circuits or semiconductor spins-scaling poses a considerable challenge because every additional qubit increases the heat generated, whereas the cooling power of dilution refrigerators is severely limited at their operating temperature (less than 100 millikelvin)(4-6). Here we demonstrate the operation of a scalable silicon quantum processor unit cell comprising two qubits confined to quantum dots at about 1.5 kelvin. We achieve this by isolating the quantum dots from the electron reservoir, and then initializing and reading the qubits solely via tunnelling of electrons between the two quantum dots(7-9). We coherently control the qubits using electrically driven spin resonance(10,11) in isotopically enriched silicon(12 28)Si, attaining single-qubit gate fidelities of 98.6 per cent and a coherence time of 2 microseconds during '  hot'  operation, comparable to those of spin qubits in natural silicon at millikelvin temperatures(13-16). Furthermore, we show that the unit cell can be operated at magnetic fields as low as 0.1 tesla, corresponding to a qubit control frequency of 3.5 gigahertz, where the qubit energy is well below the thermal energy. The unit cell constitutes the core building block of a full-scale silicon quantum computer and satisfies layout constraints required by error-correction architectures(8),(17). Our work indicates that a spin-based quantum computer could be operated at increased temperatures in a simple pumped He-4 system (which provides cooling power orders of magnitude higher than that of dilution refrigerators), thus potentially enabling the integration of classical control electronics with the qubit array(18,19).


  
Spin-cooling of the motion of a trapped diamond 期刊论文
NATURE, 2020
作者:  Auer, Thomas O.;  Khallaf, Mohammed A.;  Silbering, Ana F.;  Zappia, Giovanna;  Ellis, Kaitlyn;  Alvarez-Ocana, Raquel;  Arguello, J. Roman;  Hansson, Bill S.;  Jefferis, Gregory S. X. E.;  Caron, Sophie J. C.;  Knaden, Markus;  Benton, Richard
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

Coupling the spins of many nitrogen-vacancy centres in a trapped diamond to its orientation produces a spin-dependent torque and spin-cooling of the motion of the diamond.


Observing and controlling macroscopic quantum systems has long been a driving force in quantum physics research. In particular, strong coupling between individual quantum systems and mechanical oscillators is being actively studied(1-3). Whereas both read-out of mechanical motion using coherent control of spin systems(4-9) and single-spin read-out using pristine oscillators have been demonstrated(10,11), temperature control of the motion of a macroscopic object using long-lived electronic spins has not been reported. Here we observe a spin-dependent torque and spin-cooling of the motion of a trapped microdiamond. Using a combination of microwave and laser excitation enables the spins of nitrogen-vacancy centres to act on the diamond orientation and to cool the diamond libration via a dynamical back-action. Furthermore, by driving the system in the nonlinear regime, we demonstrate bistability and self-sustained coherent oscillations stimulated by spin-mechanical coupling, which offers the prospect of spin-driven generation of non-classical states of motion. Such a levitating diamond-held in position by electric field gradients under vacuum-can operate as a '  compass'  with controlled dissipation and has potential use in high-precision torque sensing(12-14), emulation of the spin-boson problem(15) and probing of quantum phase transitions(16). In the single-spin limit(17) and using ultrapure nanoscale diamonds, it could allow quantum non-demolition read-out of the spin of nitrogen-vacancy centres at ambient conditions, deterministic entanglement between distant individual spins(18) and matter-wave interferometry(16,19,20).


  
Submicrosecond entangling gate between trapped ions via Rydberg interaction 期刊论文
NATURE, 2020, 580 (7803) : 345-+
作者:  Chatterjee, Sourav;  Guidi, Mara;  Seeberger, Peter H.;  Gilmore, Kerry
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

Generating quantum entanglement in large systems on timescales much shorter than the coherence time is key to powerful quantum simulation and computation. Trapped ions are among the most accurately controlled and best isolated quantum systems(1) with low-error entanglement gates operated within tens of microseconds using the vibrational motion of few-ion crystals(2,3). To exceed the level of complexity tractable by classical computers the main challenge is to realize fast entanglement operations in crystals made up of many ions (large ion crystals)(4). The strong dipole-dipole interactions in polar molecule(5) and Rydberg atom(6,7) systems allow much faster entangling gates, yet stable state-independent confinement comparable with trapped ions needs to be demonstrated in these systems(8). Here we combine the benefits of these approaches: we report a two-ion entangling gate with 700-nanosecond gate time that uses the strong dipolar interaction between trapped Rydberg ions, which we use to produce a Bell state with 78 per cent fidelity. The sources of gate error are identified and a total error of less than 0.2 per cent is predicted for experimentally achievable parameters. Furthermore, we predict that residual coupling to motional modes contributes an approximate gate error of 10(-4) in a large ion crystal of 100 ions. This provides a way to speed up and scale up trapped-ion quantum computers and simulators substantially.