GSTDTAP

浏览/检索结果: 共47条,第1-10条 帮助

限定条件            
已选(0)清除 条数/页:   排序方式:
Noninvasive 2D and 3D Mapping of Root Zone Soil Moisture Through the Detection of Coarse Roots With Ground-Penetrating Radar 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (5)
作者:  Liu, X.;  Chen, J.;  Butnor, J. R.;  Qin, G.;  Cui, X.;  Fan, B.;  Lin, H.;  Guo, L.
收藏  |  浏览/下载:13/0  |  提交时间:2020/05/13
ecohydrology  in situ  near-surface geophysics  soil mapping  soil-plant-water relationships  subsoil  
Algal photophysiology drives darkening and melt of the Greenland Ice Sheet 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (11) : 5694-5705
作者:  Williamson, Christopher J.;  Cook, Joseph;  Tedstone, Andrew;  Yallop, Marian;  McCutcheon, Jenine;  Poniecka, Ewa;  Campbell, Douglas;  Irvine-Fynn, Tristram;  McQuaid, James;  Tranter, Martyn;  Perkins, Rupert;  Anesio, Alexandre
收藏  |  浏览/下载:6/0  |  提交时间:2020/05/13
Greenland Ice Sheet  glacier algae  photophysiology  melt  cryosphere  
Operation of a silicon quantum processor unit cell above one kelvin 期刊论文
NATURE, 2020, 580 (7803) : 350-+
作者:  Han, Kyuho;  Pierce, Sarah E.;  Li, Amy;  Spees, Kaitlyn;  Anderson, Grace R.;  Seoane, Jose A.;  Lo, Yuan-Hung;  Dubreuil, Michael;  Olivas, Micah;  Kamber, Roarke A.;  Wainberg, Michael;  Kostyrko, Kaja;  Kelly, Marcus R.;  Yousefi, Maryam;  Simpkins, Scott W.;  Yao, David
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Quantum computers are expected to outperform conventional computers in several important applications, from molecular simulation to search algorithms, once they can be scaled up to large numbers-typically millions-of quantum bits (qubits)(1-3). For most solid-state qubit technologies-for example, those using superconducting circuits or semiconductor spins-scaling poses a considerable challenge because every additional qubit increases the heat generated, whereas the cooling power of dilution refrigerators is severely limited at their operating temperature (less than 100 millikelvin)(4-6). Here we demonstrate the operation of a scalable silicon quantum processor unit cell comprising two qubits confined to quantum dots at about 1.5 kelvin. We achieve this by isolating the quantum dots from the electron reservoir, and then initializing and reading the qubits solely via tunnelling of electrons between the two quantum dots(7-9). We coherently control the qubits using electrically driven spin resonance(10,11) in isotopically enriched silicon(12 28)Si, attaining single-qubit gate fidelities of 98.6 per cent and a coherence time of 2 microseconds during '  hot'  operation, comparable to those of spin qubits in natural silicon at millikelvin temperatures(13-16). Furthermore, we show that the unit cell can be operated at magnetic fields as low as 0.1 tesla, corresponding to a qubit control frequency of 3.5 gigahertz, where the qubit energy is well below the thermal energy. The unit cell constitutes the core building block of a full-scale silicon quantum computer and satisfies layout constraints required by error-correction architectures(8),(17). Our work indicates that a spin-based quantum computer could be operated at increased temperatures in a simple pumped He-4 system (which provides cooling power orders of magnitude higher than that of dilution refrigerators), thus potentially enabling the integration of classical control electronics with the qubit array(18,19).


  
Observation of the Kondo screening cloud 期刊论文
NATURE, 2020, 579 (7798) : 210-+
作者:  Shahnawaz, Mohammad;  Mukherjee, Abhisek;  Pritzkow, Sandra;  Mendez, Nicolas;  Rabadia, Prakruti;  Liu, Xiangan;  Hu, Bo;  Schmeichel, Ann;  Singer, Wolfgang;  Wu, Gang;  Tsai, Ah-Lim;  Shirani, Hamid;  Nilsson, K. Peter R.;  Low, Phillip A.;  Soto, Claudio
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

When a magnetic impurity exists in a metal, conduction electrons form a spin cloud that screens the impurity spin. This basic phenomenon is called the Kondo effect(1,2). Unlike electric-charge screening, the spin-screening cloud(3-6) occurs quantum coherently, forming spin-singlet entanglement with the impurity. Although the spins interact locally around the impurity, the Kondo cloud can theoretically spread out over several micrometres. The cloud has not so far been detected, and so its physical existence-a fundamental aspect of the Kondo effect-remains controversial(7,8). Here we present experimental evidence of a Kondo cloud extending over a length of micrometres, comparable to the theoretical length xi(K). In our device, a Kondo impurity is formed in a quantum dot(2,9-11), coupling on one side to a quasi-one-dimensional channel(12) that houses a Fabry-Perot interferometer of various gate-defined lengths L exceeding one micrometre. When we sweep a voltage on the interferometer end gate-separated by L from the quantum dot-to induce Fabry-Perot oscillations in conductance we observe oscillations in the measured Kondo temperature T-K, which is a signature of the Kondo cloud at distance L. When L is less than xi(K) the T-K oscillation amplitude becomes larger as L becomes smaller, obeying a scaling function of a single parameter L/xi(K), whereas when L is greater than xi(K) the oscillation is much weaker. Our results reveal that xi(K) is the only length parameter associated with the Kondo effect, and that the cloud lies mostly within a length of xi(K). Our experimental method offers a way of detecting the spatial distribution of exotic non-Fermi liquids formed by multiple magnetic impurities or multiple screening channels(13-16) and of studying spin-correlated systems.


  
Nagaoka ferromagnetism observed in a quantum dot plaquette 期刊论文
NATURE, 2020, 579 (7800) : 528-533
作者:  Yu, Yong;  Ma, Fei;  Luo, Xi-Yu;  Jing, Bo;  Sun, Peng-Fei;  Fang, Ren-Zhou;  Yang, Chao-Wei;  Liu, Hui;  Zheng, Ming-Yang;  Xie, Xiu-Ping;  Zhang, Wei-Jun;  You, Li-Xing;  Wang, Zhen;  Chen, Teng-Yun;  Zhang, Qiang;  Bao, Xiao-Hui;  Pan, Jian-Wei
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

A quantum dot device designed to host four electrons is used to demonstrate Nagaoka ferromagnetism-a model of itinerant magnetism that has so far been limited to theoretical investigation.


Engineered, highly controllable quantum systems are promising simulators of emergent physics beyond the simulation capabilities of classical computers(1). An important problem in many-body physics is itinerant magnetism, which originates purely from long-range interactions of free electrons and whose existence in real systems has been debated for decades(2,3). Here we use a quantum simulator consisting of a four-electron-site square plaquette of quantum dots(4) to demonstrate Nagaoka ferromagnetism(5). This form of itinerant magnetism has been rigorously studied theoretically(6-9) but has remained unattainable in experiments. We load the plaquette with three electrons and demonstrate the predicted emergence of spontaneous ferromagnetic correlations through pairwise measurements of spin. We find that the ferromagnetic ground state is remarkably robust to engineered disorder in the on-site potentials and we can induce a transition to the low-spin state by changing the plaquette topology to an open chain. This demonstration of Nagaoka ferromagnetism highlights that quantum simulators can be used to study physical phenomena that have not yet been observed in any experimental system. The work also constitutes an important step towards large-scale quantum dot simulators of correlated electron systems.


  
Fast two-qubit logic with holes in germanium 期刊论文
NATURE, 2020, 577 (7791) : 487-+
作者:  Halpin-Healy, Tyler S.;  Klompe, Sanne E.;  Sternberg, Samuel H.;  Fernandez, Israel S.
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

Universal quantum information processing requires the execution of single-qubit and two-qubit logic. Across all qubit realizations(1), spin qubits in quantum dots have great promise to become the central building block for quantum computation(2). Excellent quantum dot control can be achieved in gallium arsenide(3-5), and high-fidelity qubit rotations and two-qubit logic have been demonstrated in silicon(6-9), but universal quantum logic implemented with local control has yet to be demonstrated. Here we make this step by combining all of these desirable aspects using hole quantum dots in germanium. Good control over tunnel coupling and detuning is obtained by exploiting quantum wells with very low disorder, enabling operation at the charge symmetry point for increased qubit performance. Spin-orbit coupling obviates the need for microscopic elements close to each qubit and enables rapid qubit control with driving frequencies exceeding 100 MHz. We demonstrate a fast universal quantum gate set composed of single-qubit gates with a fidelity of 99.3 per cent and a gate time of 20 nanoseconds, and two-qubit logic operations executed within 75 nanoseconds. Planar germanium has thus matured within a year from a material that can host quantum dots to a platform enabling two-qubit logic, positioning itself as an excellent material for use in quantum information applications.


Spin qubits based on hole states in strained germanium could offer the most scalable platform for quantum computation.


  
Freezing Temperature Controls Winter Water Discharge for Cold Region Watershed 期刊论文
WATER RESOURCES RESEARCH, 2019, 55 (12) : 10479-10493
作者:  Wang, Shusen
收藏  |  浏览/下载:5/0  |  提交时间:2020/02/16
Baseflow  discharge  GRACE satellites  cold region  watershed  climate change  
Genetic regulatory variation in populations informs transcriptome analysis in rare disease 期刊论文
SCIENCE, 2019, 366 (6463) : 351-+
作者:  Mohammadi, Pejman;  Castel, Stephane E.;  Cummings, Beryl B.;  Einson, Jonah;  Sousa, Christina;  Hoffman, Paul;  Donkervoort, Sandra;  Jiang, Zhuoxun;  Mohassel, Payam;  Foley, A. Reghan;  Wheeler, Heather E.;  Im, Hae Kyung;  Bonnemann, Carsten G.;  MacArthur, Daniel G.;  Lappalainen, Tuuli
收藏  |  浏览/下载:7/0  |  提交时间:2019/11/27
Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification 期刊论文
NATURE COMMUNICATIONS, 2017, 8
作者:  Kroupa, Daniel M.;  Voros, Marton;  Brawand, Nicholas P.;  McNichols, Brett W.;  Miller, Elisa M.;  Gu, Jing;  Nozik, Arthur J.;  Sellinger, Alan;  Galli, Giulia;  Beard, Matthew C.
收藏  |  浏览/下载:7/0  |  提交时间:2019/11/27
Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots 期刊论文
NATURE COMMUNICATIONS, 2017, 8
作者:  Huber, Daniel;  Reindl, Marcus;  Huo, Yongheng;  Huang, Huiying;  Wildmann, Johannes S.;  Schmidt, Oliver G.;  Rastelli, Armando;  Trotta, Rinaldo
收藏  |  浏览/下载:5/0  |  提交时间:2019/11/27