GSTDTAP

浏览/检索结果: 共13条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Molecular architecture of lineage allocation and tissue organization in early mouse embryo (vol 572, 528, 2019) 期刊论文
NATURE, 2020, 577 (7791) : E6-E6
作者:  Peng, Guangdun;  Suo, Shengbao;  Cui, Guizhong;  Yu, Fang;  Wang, Ran;  Chen, Jun;  Chen, Shirui;  Liu, Zhiwen;  Chen, Guoyu;  Qian, Yun;  Tam, Patrick P. L.;  Han, Jing-Dong J.;  Jing, Naihe
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03
HBO1 is required for the maintenance of leukaemia stem cells 期刊论文
NATURE, 2020, 577 (7789) : 266-+
作者:  MacPherson, Laura;  Anokye, Juliana;  Yeung, Miriam M.;  Lam, Enid Y. N.;  Chan, Yih-Chih;  Weng, Chen-Fang;  Yeh, Paul;  Knezevic, Kathy;  Butler, Miriam S.;  Hoegl, Annabelle;  Chan, Kah-Lok;  Burr, Marian L.;  Gearing, Linden J.;  Willson, Tracy;  Liu, Joy;  Choi, Jarny;  Yang, Yuqing;  Bilardi, Rebecca A.;  Falk, Hendrik;  Nghi Nguyen;  Stupple, Paul A.;  Peat, Thomas S.;  Zhang, Ming;  de Silva, Melanie;  Carrasco-Pozo, Catalina;  Avery, Vicky M.;  Khoo, Poh Sim;  Dolezal, Olan;  Dennis, Matthew L.;  Nuttall, Stewart;  Surjadi, Regina;  Newman, Janet;  Ren, Bin;  Leaver, David J.;  Sun, Yuxin;  Baell, Jonathan B.;  Dovey, Oliver;  Vassiliou, George S.;  Grebien, Florian;  Dawson, Sarah-Jane;  Street, Ian P.;  Monahan, Brendon J.;  Burns, Christopher J.;  Choudhary, Chunaram;  Blewitt, Marnie E.;  Voss, Anne K.;  Thomas, Tim;  Dawson, Mark A.
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by transcriptional dysregulation that results in a block in differentiation and increased malignant self-renewal. Various epigenetic therapies aimed at reversing these hallmarks of AML have progressed into clinical trials, but most show only modest efficacy owing to an inability to effectively eradicate leukaemia stem cells (LSCs)(1). Here, to specifically identify novel dependencies in LSCs, we screened a bespoke library of small hairpin RNAs that target chromatin regulators in a unique ex vivo mouse model of LSCs. We identify the MYST acetyltransferase HBO1 (also known as KAT7 or MYST2) and several known members of the HBO1 protein complex as critical regulators of LSC maintenance. Using CRISPR domain screening and quantitative mass spectrometry, we identified the histone acetyltransferase domain of HBO1 as being essential in the acetylation of histone H3 at K14. H3 acetylated at K14 (H3K14ac) facilitates the processivity of RNA polymerase II to maintain the high expression of key genes (including Hoxa9 and Hoxa10) that help to sustain the functional properties of LSCs. To leverage this dependency therapeutically, we developed a highly potent small-molecule inhibitor of HBO1 and demonstrate its mode of activity as a competitive analogue of acetyl-CoA. Inhibition of HBO1 phenocopied our genetic data and showed efficacy in a broad range of human cell lines and primary AML cells from patients. These biological, structural and chemical insights into a therapeutic target in AML will enable the clinical translation of these findings.


  
Layered nanocomposites by shear-flow-induced alignment of nanosheets (vol 580, pg 210, 2020) 期刊论文
NATURE, 2020, 582 (7811) : E4-E4
作者:  Chen, Guorui;  Sharpe, Aaron L.;  Fox, Eli J.;  Zhang, Ya-Hui;  Wang, Shaoxin;  Jiang, Lili;  Lyu, Bosai;  Li, Hongyuan;  Watanabe, Kenji;  Taniguchi, Takashi;  Shi, Zhiwen;  Senthil, T.;  Goldhaber-Gordon, David;  Zhang, Yuanbo;  Wang, Feng
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03
The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K 期刊论文
NATURE, 2020
作者:  Chen, Guorui;  Sharpe, Aaron L.;  Fox, Eli J.;  Zhang, Ya-Hui;  Wang, Shaoxin;  Jiang, Lili;  Lyu, Bosai;  Li, Hongyuan;  Watanabe, Kenji;  Taniguchi, Takashi;  Shi, Zhiwen;  Senthil, T.;  Goldhaber-Gordon, David;  Zhang, Yuanbo;  Wang, Feng
收藏  |  浏览/下载:44/0  |  提交时间:2020/07/03

The cyclin-dependent kinase inhibitor CR8 acts as a molecular glue compound by inducing the formation of a complex between CDK12-cyclin K and DDB1, which results in the ubiquitination and degradation of cyclin K.


Molecular glue compounds induce protein-protein interactions that, in the context of a ubiquitin ligase, lead to protein degradation(1). Unlike traditional enzyme inhibitors, these molecular glue degraders act substoichiometrically to catalyse the rapid depletion of previously inaccessible targets(2). They are clinically effective and highly sought-after, but have thus far only been discovered serendipitously. Here, through systematically mining databases for correlations between the cytotoxicity of 4,518 clinical and preclinical small molecules and the expression levels of E3 ligase components across hundreds of human cancer cell lines(3-5), we identify CR8-a cyclin-dependent kinase (CDK) inhibitor(6)-as a compound that acts as a molecular glue degrader. The CDK-bound form of CR8 has a solvent-exposed pyridyl moiety that induces the formation of a complex between CDK12-cyclin K and the CUL4 adaptor protein DDB1, bypassing the requirement for a substrate receptor and presenting cyclin K for ubiquitination and degradation. Our studies demonstrate that chemical alteration of surface-exposed moieties can confer gain-of-function glue properties to an inhibitor, and we propose this as a broader strategy through which target-binding molecules could be converted into molecular glues.


  
Electrical manipulation of a topological antiferromagnetic state 期刊论文
NATURE, 2020, 580 (7805) : 608-+
作者:  Chabon, Jacob J.;  Hamilton, Emily G.;  Kurtz, David M.;  Esfahani, Mohammad S.;  Moding, Everett J.;  Stehr, Henning;  Schroers-Martin, Joseph;  Nabet, Barzin Y.;  Chen, Binbin;  Chaudhuri, Aadel A.;  Liu, Chih Long;  Hui, Angela B.;  Jin, Michael C.;  Azad, Tej D.;  Almanza, Diego;  Jeon, Young-Jun;  Nesselbush, Monica C.;  Keh, Lyron Co Ting;  Bonilla, Rene F.;  Yoo, Christopher H.;  Ko, Ryan B.;  Chen, Emily L.;  Merriott, David J.;  Massion, Pierre P.;  Mansfield, Aaron S.;  Jen, Jin;  Ren, Hong Z.;  Lin, Steven H.;  Costantino, Christina L.;  Burr, Risa;  Tibshirani, Robert;  Gambhir, Sanjiv S.;  Berry, Gerald J.;  Jensen, Kristin C.;  West, Robert B.;  Neal, Joel W.;  Wakelee, Heather A.;  Loo, Billy W., Jr.;  Kunder, Christian A.;  Leung, Ann N.;  Lui, Natalie S.;  Berry, Mark F.;  Shrager, Joseph B.;  Nair, Viswam S.;  Haber, Daniel A.;  Sequist, Lecia V.;  Alizadeh, Ash A.;  Diehn, Maximilian
收藏  |  浏览/下载:37/0  |  提交时间:2020/07/03

Room-temperature electrical switching of a topological antiferromagnetic state in polycrystalline Mn3Sn thin films is demonstrated using the same protocol as that used for conventional ferromagnetic metals.


Electrical manipulation of phenomena generated by nontrivial band topology is essential for the development of next-generation technology using topological protection. A Weyl semimetal is a three-dimensional gapless system that hosts Weyl fermions as low-energy quasiparticles(1-4). It has various exotic properties, such as a large anomalous Hall effect (AHE) and chiral anomaly, which are robust owing to the topologically protected Weyl nodes(1-16). To manipulate such phenomena, a magnetic version of Weyl semimetals would be useful for controlling the locations of Weyl nodes in the Brillouin zone. Moreover, electrical manipulation of antiferromagnetic Weyl metals would facilitate the use of antiferromagnetic spintronics to realize high-density devices with ultrafast operation(17,18). However, electrical control of a Weyl metal has not yet been reported. Here we demonstrate the electrical switching of a topological antiferromagnetic state and its detection by the AHE at room temperature in a polycrystalline thin film(19) of the antiferromagnetic Weyl metal Mn3Sn9,10,12,20, which exhibits zero-field AHE. Using bilayer devices composed of Mn3Sn and nonmagnetic metals, we find that an electrical current density of about 10(10) to 10(11) amperes per square metre induces magnetic switching in the nonmagnetic metals, with a large change in Hall voltage. In addition, the current polarity along the bias field and the sign of the spin Hall angle of the nonmagnetic metals-positive for Pt (ref. (21)), close to 0 for Cu and negative for W (ref. (22))-determines the sign of the Hall voltage. Notably, the electrical switching in the antiferromagnet is achieved with the same protocol as that used for ferromagnetic metals(23,24). Our results may lead to further scientific and technological advances in topological magnetism and antiferromagnetic spintronics.


  
Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome 期刊论文
NATURE, 2020
作者:  Coll, Anthony P.;  Chen, Michael;  Taskar, Pranali;  Rimmington, Debra;  Patel, Satish;  Tadross, John A.;  Cimino, Irene;  Yang, Ming;  Welsh, Paul;  Virtue, Samuel;  Goldspink, Deborah A.;  Miedzybrodzka, Emily L.;  Konopka, Adam R.;  Esponda, Raul Ruiz;  Huang, Jeffrey T. -J.;  Tung, Y. C. Loraine;  Rodriguez-Cuenca, Sergio
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

The cryo-electron microscopy structure of the 16-subunit yeast SWI/SNF complex RSC in complex with a nucleosome substrate provides insights into the chromatin-remodelling function of this family of protein complexes.


Chromatin-remodelling complexes of the SWI/SNF family function in the formation of nucleosome-depleted, transcriptionally active promoter regions (NDRs)(1,2). In the yeast Saccharomyces cerevisiae, the essential SWI/SNF complex RSC3 contains 16 subunits, including the ATP-dependent DNA translocase Sth1(4,5). RSC removes nucleosomes from promoter regions(6,7) and positions the specialized +1 and -1 nucleosomes that flank NDRs(8,9). Here we present the cryo-electron microscopy structure of RSC in complex with a nucleosome substrate. The structure reveals that RSC forms five protein modules and suggests key features of the remodelling mechanism. The body module serves as a scaffold for the four flexible modules that we call DNA-interacting, ATPase, arm and actin-related protein (ARP) modules. The DNA-interacting module binds extra-nucleosomal DNA and is involved in the recognition of promoter DNA elements(8,10,11) that influence RSC functionality(12). The ATPase and arm modules sandwich the nucleosome disc with the Snf2 ATP-coupling (SnAC) domain and the finger helix, respectively. The translocase motor of the ATPase module engages with the edge of the nucleosome at superhelical location +2. The mobile ARP module may modulate translocase-nucleosome interactions to regulate RSC activity(5). The RSC-nucleosome structure provides a basis for understanding NDR formation and the structure and function of human SWI/SNF complexes that are frequently mutated in cancer(13).


  
Neuronal programming by microbiota regulates intestinal physiology 期刊论文
NATURE, 2020, 578 (7794) : 284-+
作者:  Li, Yilong;  Roberts, Nicola D.;  Wala, Jeremiah A.;  Shapira, Ofer;  Schumacher, Steven E.;  Kumar, Kiran;  Khurana, Ekta;  Waszak, Sebastian;  Korbel, Jan O.;  Haber, James E.;  Imielinski, Marcin;  Weischenfeldt, Joachim;  Beroukhim, Rameen;  Campbell, Peter J.;  Akdemir, Kadir C.;  Alvarez, Eva G.;  Baez-Ortega, Adrian;  Boutros, Paul C.;  Bowtell, David D. L.;  Brors, Benedikt;  Burns, Kathleen H.;  Chan, Kin;  Chen, Ken;  Cortes-Ciriano, Isidro;  Dueso-Barroso, Ana;  Dunford, Andrew J.;  Edwards, Paul A.;  Estivill, Xavier;  Etemadmoghadam, Dariush;  Feuerbach, Lars;  Fink, J. Lynn;  Frenkel-Morgenstern, Milana;  Garsed, Dale W.;  Gerstein, Mark;  Gordenin, Dmitry A.;  Haan, David;  Hess, Julian M.;  Hutter, Barbara;  Jones, David T. W.;  Ju, Young Seok;  Kazanov, Marat D.;  Klimczak, Leszek J.;  Koh, Youngil;  Lee, Eunjung Alice;  Lee, Jake June-Koo;  Lynch, Andy G.;  Macintyre, Geoff;  Markowetz, Florian;  Martincorena, Inigo;  Martinez-Fundichely, Alexander;  Meyerson, Matthew;  Miyano, Satoru;  Nakagawa, Hidewaki;  Navarro, Fabio C. P.;  Ossowski, Stephan;  Park, Peter J.;  Pearson, John, V;  Puiggros, Montserrat;  Rippe, Karsten;  Roberts, Steven A.;  Rodriguez-Martin, Bernardo;  Scully, Ralph;  Shackleton, Mark;  Sidiropoulos, Nikos;  Sieverling, Lina;  Stewart, Chip;  Torrents, David;  Tubio, Jose M. C.;  Villasante, Izar;  Waddell, Nicola;  Yang, Lixing;  Yao, Xiaotong;  Yoon, Sung-Soo;  Zamora, Jorge;  Zhang, Cheng-Zhong
收藏  |  浏览/下载:40/0  |  提交时间:2020/07/03

Neural control of the function of visceral organs is essential for homeostasis and health. Intestinal peristalsis is critical for digestive physiology and host defence, and is often dysregulated in gastrointestinal disorders(1). Luminal factors, such as diet and microbiota, regulate neurogenic programs of gut motility(2-5), but the underlying molecular mechanisms remain unclear. Here we show that the transcription factor aryl hydrocarbon receptor (AHR) functions as a biosensor in intestinal neural circuits, linking their functional output to the microbial environment of the gut lumen. Using nuclear RNA sequencing of mouse enteric neurons that represent distinct intestinal segments and microbiota states, we demonstrate that the intrinsic neural networks of the colon exhibit unique transcriptional profiles that are controlled by the combined effects of host genetic programs and microbial colonization. Microbiota-induced expression of AHR in neurons of the distal gastrointestinal tract enables these neurons to respond to the luminal environment and to induce expression of neuron-specific effector mechanisms. Neuron-specific deletion of Ahr, or constitutive overexpression of its negative feedback regulator CYP1A1, results in reduced peristaltic activity of the colon, similar to that observed in microbiota-depleted mice. Finally, expression of Ahr in the enteric neurons of mice treated with antibiotics partially restores intestinal motility. Together, our experiments identify AHR signalling in enteric neurons as a regulatory node that integrates the luminal environment with the physiological output of intestinal neural circuits to maintain gut homeostasis and health.


In a mouse model, aryl hydrocarbon receptor signalling in enteric neurons is revealed as a mechanism that helps to maintain gut homeostasis by integrating the luminal environment with the physiology of intestinal neural circuits.


  
A mycobacterial ABC transporter mediates the uptake of hydrophilic compounds 期刊论文
NATURE, 2020, 580 (7803) : 409-+
作者:  Al-Shayeb, Basem;  Sachdeva, Rohan;  Chen, Lin-Xing;  Ward, Fred;  Munk, Patrick;  Devoto, Audra;  Castelle, Cindy J.;  Olm, Matthew R.;  Bouma-Gregson, Keith;  Amano, Yuki;  He, Christine;  Meheust, Raphael;  Brooks, Brandon;  Thomas, Alex;  Levy, Adi;  Matheus-Carnevali, Paula;  Sun, Christine;  Goltsman, Daniela S. A.;  Borton, Mikayla A.;  Sharrar, Allison;  Jaffe, Alexander L.;  Nelson, Tara C.;  Kantor, Rose;  Keren, Ray;  Lane, Katherine R.;  Farag, Ibrahim F.;  Lei, Shufei;  Finstad, Kari;  Amundson, Ronald;  Anantharaman, Karthik;  Zhou, Jinglie;  Probst, Alexander J.;  Power, Mary E.;  Tringe, Susannah G.;  Li, Wen-Jun;  Wrighton, Kelly;  Harrison, Sue;  Morowitz, Michael;  Relman, David A.;  Doudna, Jennifer A.;  Lehours, Anne-Catherine;  Warren, Lesley;  Cate, Jamie H. D.;  Santini, Joanne M.;  Banfield, Jillian F.
收藏  |  浏览/下载:37/0  |  提交时间:2020/07/03

Mycobacterium tuberculosis (Mtb) is an obligate human pathogen and the causative agent of tuberculosis(1-3). Although Mtb can synthesize vitamin B-12 (cobalamin) de novo, uptake of cobalamin has been linked to pathogenesis of tuberculosis2. Mtb does not encode any characterized cobalamin transporter(4-6)  however, the gene rv1819c was found to be essential for uptake of cobalamin(1). This result is difficult to reconcile with the original annotation of Rv1819c as a protein implicated in the transport of antimicrobial peptides such as bleomycin(7). In addition, uptake of cobalamin seems inconsistent with the amino acid sequence, which suggests that Rv1819c has a bacterial ATP-binding cassette (ABC)-exporter fold1. Here, we present structures of Rv1819c, which reveal that the protein indeed contains the ABC-exporter fold, as well as a large water-filled cavity of about 7,700 angstrom(3), which enables the protein to transport the unrelated hydrophilic compounds bleomycin and cobalamin. On the basis of these structures, we propose that Rv1819c is a multi-solute transporter for hydrophilic molecules, analogous to the multidrug exporters of the ABC transporter family, which pump out structurally diverse hydrophobic compounds from cells(8-11).


  
Pathway paradigms revealed from the genetics of inflammatory bowel disease 期刊论文
NATURE, 2020, 578 (7796) : 527-539
作者:  Yu, Kwanha;  Lin, Chia-Ching John;  Hatcher, Asante;  Lozzi, Brittney;  Kong, Kathleen;  Huang-Hobbs, Emmet;  Cheng, Yi-Ting;  Beechar, Vivek B.;  Zhu, Wenyi;  Zhang, Yiqun;  Chen, Fengju;  Mills, Gordon B.;  Mohila, Carrie A.;  Creighton, Chad J.;  Noebels, Jeffrey L.;  Scott, Kenneth L.;  Deneen, Benjamin
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

Inflammatory bowel disease (IBD) is a complex genetic disease that is instigated and amplified by the confluence of multiple genetic and environmental variables that perturb the immune-microbiome axis. The challenge of dissecting pathological mechanisms underlying IBD has led to the development of transformative approaches in human genetics and functional genomics. Here we describe IBD as a model disease in the context of leveraging human genetics to dissect interactions in cellular and molecular pathways that regulate homeostasis of the mucosal immune system. Finally, we synthesize emerging insights from multiple experimental approaches into pathway paradigms and discuss future prospects for disease-subtype classification and therapeutic intervention.


This Review examines inflammatory bowel disease in the context of human genetics studies that help to identify pathways that regulate homeostasis of the mucosal immune system and discusses future prospects for disease-subtype classification and therapeutic intervention.


  
Mechanism of adrenergic Ca(V)1.2 stimulation revealed by proximity proteomics 期刊论文
NATURE, 2020, 577 (7792) : 695-+
作者:  Peng, Guangdun;  Suo, Shengbao;  Cui, Guizhong;  Yu, Fang;  Wang, Ran;  Chen, Jun;  Chen, Shirui;  Liu, Zhiwen;  Chen, Guoyu;  Qian, Yun;  Tam, Patrick P. L.;  Han, Jing-Dong J.;  Jing, Naihe
收藏  |  浏览/下载:25/0  |  提交时间:2020/07/03

An in vivo approach to identify proteins whose enrichment near cardiac Ca(V)1.2 channels changes upon beta-adrenergic stimulation finds the G protein Rad, which is phosphorylated by protein kinase A, thereby relieving channel inhibition by Rad and causing an increased Ca2+ current.


Increased cardiac contractility during the fight-or-flight response is caused by beta-adrenergic augmentation of Ca(V)1.2 voltage-gated calcium channels(1-4). However, this augmentation persists in transgenic murine hearts expressing mutant Ca(V)1.2 alpha(1C) and beta subunits that can no longer be phosphorylated by protein kinase A-an essential downstream mediator of beta-adrenergic signalling-suggesting that non-channel factors are also required. Here we identify the mechanism by which beta-adrenergic agonists stimulate voltage-gated calcium channels. We express alpha(1C) or beta(2B) subunits conjugated to ascorbate peroxidase(5) in mouse hearts, and use multiplexed quantitative proteomics(6,7) to track hundreds of proteins in the proximity of Ca(V)1.2. We observe that the calcium-channel inhibitor Rad(8,9), a monomeric G protein, is enriched in the Ca(V)1.2 microenvironment but is depleted during beta-adrenergic stimulation. Phosphorylation by protein kinase A of specific serine residues on Rad decreases its affinity for beta subunits and relieves constitutive inhibition of Ca(V)1.2, observed as an increase in channel open probability. Expression of Rad or its homologue Rem in HEK293T cells also imparts stimulation of Ca(V)1.3 and Ca(V)2.2 by protein kinase A, revealing an evolutionarily conserved mechanism that confers adrenergic modulation upon voltage-gated calcium channels.