GSTDTAP

浏览/检索结果: 共20条,第1-10条 帮助

限定条件                
已选(0)清除 条数/页:   排序方式:
New Guinea has the world鈥檚 richest island flora 期刊论文
Nature, 2020
作者:  Rodrigo Cá;  mara-Leret;  David G. Frodin;  Frits Adema;  Christiane Anderson;  Marc S. Appelhans;  George Argent;  Susana Arias Guerrero;  Peter Ashton;  William J. Baker;  Anders S. Barfod;  David Barrington;  Renata Borosova;  Gemma L. C. Bramley;  Marie Briggs;  Sven Buerki;  Daniel Cahen;  Martin W. Callmander;  Martin Cheek;  Cheng-Wei Chen;  Barry J. Conn;  Mark J. E. Coode;  Iain Darbyshire;  Sally Dawson;  John Dransfield;  Clare Drinkell;  Brigitta Duyfjes;  Atsushi Ebihara;  Zacky Ezedin;  Long-Fei Fu;  Osia Gideon;  Deden Girmansyah;  Rafaë;  l Govaerts;  Helen Fortune-Hopkins;  Gustavo Hassemer;  Alistair Hay;  Charlie D. Heatubun;  D. J. Nicholas Hind;  Peter Hoch;  Peter Homot;  Peter Hovenkamp;  Mark Hughes;  Matthew Jebb;  Laura Jennings;  Tiberius Jimbo;  Michael Kessler;  Ruth Kiew;  Sandra Knapp;  Penniel Lamei;  Marcus Lehnert;  Gwilym P. Lewis;  Hans Peter Linder;  Stuart Lindsay;  Yee Wen Low;  Eve Lucas;  Jeffrey P. Mancera;  Alexandre K. Monro;  Alison Moore;  David J. Middleton;  Hidetoshi Nagamasu;  Mark F. Newman;  Eimear Nic Lughadha;  Pablo H. A. Melo;  Daniel J. Ohlsen;  Caroline M. Pannell;  Barbara Parris;  Laura Pearce;  Darin S. Penneys;  Leon R. Perrie;  Peter Petoe;  Axel Dalberg Poulsen;  Ghillean T. Prance;  J. Peter Quakenbush;  Niels Raes;  Michele Rodda;  Zachary S. Rogers;  André;  Schuiteman;  Pedro Schwartsburd;  Robert W. Scotland;  Mark P. Simmons;  David A. Simpson;  Peter Stevens;  Michael Sundue;  Weston Testo;  Anna Trias-Blasi;  Ian Turner;  Timothy Utteridge;  Lesley Walsingham;  Bruce L. Webber;  Ran Wei;  George D. Weiblen;  Maximilian Weigend;  Peter Weston;  Willem de Wilde;  Peter Wilkie;  Christine M. Wilmot-Dear;  Hannah P. Wilson;  John R. I. Wood;  Li-Bing Zhang;  Peter C. van Welzen
收藏  |  浏览/下载:33/0  |  提交时间:2020/08/18
Global status and conservation potential of reef sharks 期刊论文
Nature, 2020
作者:  M. Aaron MacNeil;  Demian D. Chapman;  Michelle Heupel;  Colin A. Simpfendorfer;  Michael Heithaus;  Mark Meekan;  Euan Harvey;  Jordan Goetze;  Jeremy Kiszka;  Mark E. Bond;  Leanne M. Currey-Randall;  Conrad W. Speed;  C. Samantha Sherman;  Matthew J. Rees;  Vinay Udyawer;  Kathryn I. Flowers;  Gina Clementi;  Jasmine Valentin-Albanese;  Taylor Gorham;  M. Shiham Adam;  Khadeeja Ali;  Fabiá;  n Pina-Amargó;  s;  Jorge A. Angulo-Valdé;  s;  Jacob Asher;  Laura Garcí;  a Barcia;  Océ;  ane Beaufort;  Cecilie Benjamin;  Anthony T. F. Bernard;  Michael L. Berumen;  Stacy Bierwagen;  Erika Bonnema;  Rosalind M. K. Bown;  Darcey Bradley;  Edd Brooks;  J. Jed Brown;  Dayne Buddo;  Patrick Burke;  Camila Cá;  ceres;  Diego Cardeñ;  osa;  Jeffrey C. Carrier;  Jennifer E. Caselle;  Venkatesh Charloo;  Thomas Claverie;  Eric Clua;  Jesse E. M. Cochran;  Neil Cook;  Jessica Cramp;  Brooke D’;  Alberto;  Martin de Graaf;  Mareike Dornhege;  Andy Estep;  Lanya Fanovich;  Naomi F. Farabough;  Daniel Fernando;  Anna L. Flam;  Camilla Floros;  Virginia Fourqurean;  Ricardo Garla;  Kirk Gastrich;  Lachlan George;  Rory Graham;  Tristan Guttridge;  Royale S. Hardenstine;  Stephen Heck;  Aaron C. Henderson;  Heidi Hertler;  Robert Hueter;  Mohini Johnson;  Stacy Jupiter;  Devanshi Kasana;  Steven T. Kessel;  Benedict Kiilu;  Taratu Kirata;  Baraka Kuguru;  Fabian Kyne;  Tim Langlois;  Elodie J. I. Lé;  ;  e;  Steve Lindfield;  Andrea Luna-Acosta;  Jade Maggs;  B. Mabel Manjaji-Matsumoto;  Andrea Marshall;  Philip Matich;  Erin McCombs;  Dianne McLean;  Llewelyn Meggs;  Stephen Moore;  Sushmita Mukherji;  Ryan Murray;  Muslimin Kaimuddin;  Stephen J. Newman;  Josep Nogué;  s;  Clay Obota;  Owen O’;  Shea;  Kennedy Osuka;  Yannis P. Papastamatiou;  Nishan Perera;  Bradley Peterson;  Alessandro Ponzo;  Andhika Prasetyo;  L. M. Sjamsul Quamar;  Jessica Quinlan;  Alexei Ruiz-Abierno;  Enric Sala;  Melita Samoilys;  Michelle Schä;  rer-Umpierre;  Audrey Schlaff;  Nikola Simpson;  Adam N. H. Smith;  Lauren Sparks;  Akshay Tanna;  Rubé;  n Torres;  Michael J. Travers;  Maurits van Zinnicq Bergmann;  Laurent Vigliola;  Juney Ward;  Alexandra M. Watts;  Colin Wen;  Elizabeth Whitman;  Aaron J. Wirsing;  Aljoscha Wothke;  Esteban Zarza-Gonzâ;  lez;  Joshua E. Cinner
收藏  |  浏览/下载:17/0  |  提交时间:2020/08/09
Metabolic heterogeneity confers differences in melanoma metastatic potential 期刊论文
NATURE, 2020, 577 (7788) : 115-+
作者:  Tasdogan, Alpaslan;  Faubert, Brandon;  Ramesh, Vijayashree;  Ubellacker, Jessalyn M.;  Shen, Bo;  Solmonson, Ashley;  Murphy, Malea M.;  Gu, Zhimin;  Gu, Wen;  Martin, Misty;  Kasitinon, Stacy Y.;  Vandergriff, Travis;  Mathews, Thomas P.;  Zhao, Zhiyu;  Schadendorf, Dirk;  DeBerardinis, Ralph J.;  Morrison, Sean J.
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

Metastasis requires cancer cells to undergo metabolic changes that are poorly understood(1-3). Here we show that metabolic differences among melanoma cells confer differences in metastatic potential as a result of differences in the function of the MCT1 transporter. In vivo isotope tracing analysis in patient-derived xenografts revealed differences in nutrient handling between efficiently and inefficiently metastasizing melanomas, with circulating lactate being a more prominent source of tumour lactate in efficient metastasizers. Efficient metastasizers had higher levels of MCT1, and inhibition of MCT1 reduced lactate uptake. MCT1 inhibition had little effect on the growth of primary subcutaneous tumours, but resulted in depletion of circulating melanoma cells and reduced the metastatic disease burden in patient-derived xenografts and in mouse melanomas. In addition, inhibition of MCT1 suppressed the oxidative pentose phosphate pathway and increased levels of reactive oxygen species. Antioxidants blocked the effects of MCT1 inhibition on metastasis. MCT1(high) and MCT1(-/low) cells from the same melanomas had similar capacities to form subcutaneous tumours, but MCT1(high) cells formed more metastases after intravenous injection. Metabolic differences among cancer cells thus confer differences in metastatic potential as metastasizing cells depend on MCT1 to manage oxidative stress.


  
Observation of Bose-Einstein condensates in an Earth-orbiting research lab 期刊论文
NATURE, 2020, 582 (7811) : 103-+
作者:  Yamamoto, Keisuke;  Venida, Anthony;  Yano, Julian;  Biancur, Douglas E.;  Kakiuchi, Miwako;  Gupta, Suprit;  Sohn, Albert S. W.;  Mukhopadhyay, Subhadip;  Lin, Elaine Y.;  Parker, Seth J.;  Banh, Robert S.;  Paulo, Joao A.;  Wen, Kwun Wah;  Debnath, Jayanta;  Kim, Grace E.;  Mancias, Joseph D.;  Fearon, Douglas T.;  Perera, Rushika M.;  Kimmelman, Alec C.
收藏  |  浏览/下载:25/0  |  提交时间:2020/07/03

Quantum mechanics governs the microscopic world, where low mass and momentum reveal a natural wave-particle duality. Magnifying quantum behaviour to macroscopic scales is a major strength of the technique of cooling and trapping atomic gases, in which low momentum is engineered through extremely low temperatures. Advances in this field have achieved such precise control over atomic systems that gravity, often negligible when considering individual atoms, has emerged as a substantial obstacle. In particular, although weaker trapping fields would allow access to lower temperatures(1,2), gravity empties atom traps that are too weak. Additionally, inertial sensors based on cold atoms could reach better sensitivities if the free-fall time of the atoms after release from the trap could be made longer(3). Planetary orbit, specifically the condition of perpetual free-fall, offers to lift cold-atom studies beyond such terrestrial limitations. Here we report production of rubidium Bose-Einstein condensates (BECs) in an Earth-orbiting research laboratory, the Cold Atom Lab. We observe subnanokelvin BECs in weak trapping potentials with free-expansion times extending beyond one second, providing an initial demonstration of the advantages offered by a microgravity environment for cold-atom experiments and verifying the successful operation of this facility. With routine BEC production, continuing operations will support long-term investigations of trap topologies unique to microgravity(4,5), atom-laser sources(6), few-body physics(7,8)and pathfinding techniques for atom-wave interferometry(9-12).


  
Accurate compound-specific C-14 dating of archaeological pottery vessels 期刊论文
NATURE, 2020, 580 (7804) : 506-+
作者:  Yin, Yafei;  Lu, J. Yuyang;  Zhang, Xuechun;  Shao, Wen;  Xu, Yanhui;  Li, Pan;  Hong, Yantao;  Cui, Li;  Shan, Ge;  Tian, Bin;  Zhang, Qiangfeng Cliff;  Shen, Xiaohua
收藏  |  浏览/下载:20/0  |  提交时间:2020/05/13

Pottery is one of the most commonly recovered artefacts from archaeological sites. Despite more than a century of relative dating based on typology and seriation(1), accurate dating of pottery using the radiocarbon dating method has proven extremely challenging owing to the limited survival of organic temper and unreliability of visible residues(2-4). Here we report a method to directly date archaeological pottery based on accelerator mass spectrometry analysis of C-14 in absorbed food residues using palmitic (C-16:0) and stearic (C-18:0) fatty acids purified by preparative gas chromatography(5-8). We present accurate compound-specific radiocarbon determinations of lipids extracted from pottery vessels, which were rigorously evaluated by comparison with dendrochronological dates(9,10) and inclusion in site and regional chronologies that contained previously determined radiocarbon dates on other materials(11-15). Notably, the compound-specific dates from each of the C-16:0 and C-18:0 fatty acids in pottery vessels provide an internal quality control of the results(6) and are entirely compatible with dates for other commonly dated materials. Accurate radiocarbon dating of pottery vessels can reveal: (1) the period of use of pottery  (2) the antiquity of organic residues, including when specific foodstuffs were exploited  (3) the chronology of sites in the absence of traditionally datable materials  and (4) direct verification of pottery typochronologies. Here we used the method to date the exploitation of dairy and carcass products in Neolithic vessels from Britain, Anatolia, central and western Europe, and Saharan Africa.


Using lipid residues absorbed in potsherds, the ages of pottery from various archaeological sites are determined and validated using sites for which the dates are well known from other methods.


  
Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform 期刊论文
NATURE, 2020
作者:  Touat, Mehdi;  Li, Yvonne Y.;  Boynton, Adam N.;  Spurr, Liam F.;  Iorgulescu, J. Bryan;  Bohrson, Craig L.;  Cortes-Ciriano, Isidro;  Birzu, Cristina;  Geduldig, Jack E.;  Pelton, Kristine;  Lim-Fat, Mary Jane;  Pal, Sangita;  Ferrer-Luna, Ruben;  Ramkissoon, Shakti H.;  Dubois, Frank;  Bellamy, Charlotte;  Currimjee, Naomi;  Bonardi, Juliana;  Qian Kenin;  Ho, Patricia;  Malinowski, Seth;  Taquet, Leon;  Jones, Robert E.;  Shetty, Aniket;  Chow, Kin-Hoe;  Sharaf, Radwa;  Pavlick, Dean;  Albacker, Lee A.;  Younan, Nadia;  Baldini, Capucine;  Verreault, Maite;  Giry, Marine;  Guillerm, Erell;  Ammari, Samy;  Beuvon, Frederic;  Mokhtari, Karima;  Alentorn, Agusti;  Dehais, Caroline;  Houillier, Caroline;  Laigle-Donadey, Florence;  Psimaras, Dimitri;  Lee, Eudocia Q.;  Nayak, Lakshmi;  McFaline-Figueroa, J. Ricardo;  Carpentier, Alexandre;  Cornu, Philippe;  Capelle, Laurent;  Mathon, Bertrand;  Barnholtz-Sloan, Jill S.;  Chakravarti, Arnab;  Bi, Wenya Linda;  Chiocca, E. Antonio;  Fehnel, Katie Pricola;  Alexandrescu, Sanda;  Chi, Susan N.;  Haas-Kogan, Daphne;  Batchelor, Tracy T.;  Frampton, Garrett M.;  Alexander, Brian M.;  Huang, Raymond Y.;  Ligon, Azra H.;  Coulet, Florence;  Delattre, Jean-Yves;  Hoang-Xuan, Khe;  Meredith, David M.;  Santagata, Sandro;  Duval, Alex;  Sanson, Marc;  Cherniack, Andrew D.;  Wen, Patrick Y.;  Reardon, David A.;  Marabelle, Aurelien;  Park, Peter J.;  Idbaih, Ahmed;  Beroukhim, Rameen;  Bandopadhayay, Pratiti;  Bielle, Franck;  Ligon, Keith L.
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Reverse genetics has been an indispensable tool to gain insights into viral pathogenesis and vaccine development. The genomes of large RNA viruses, such as those from coronaviruses, are cumbersome to clone and manipulate inEscherichia coliowing to the size and occasional instability of the genome(1-3). Therefore, an alternative rapid and robust reverse-genetics platform for RNA viruses would benefit the research community. Here we show the full functionality of a yeast-based synthetic genomics platform to genetically reconstruct diverse RNA viruses, including members of theCoronaviridae,FlaviviridaeandPneumoviridaefamilies. Viral subgenomic fragments were generated using viral isolates, cloned viral DNA, clinical samples or synthetic DNA, and these fragments were then reassembled in one step inSaccharomyces cerevisiaeusing transformation-associated recombination cloning to maintain the genome as a yeast artificial chromosome. T7 RNA polymerase was then used to generate infectious RNA to rescue viable virus. Using this platform, we were able to engineer and generate chemically synthesized clones of the virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)(4), which has caused the recent pandemic of coronavirus disease (COVID-19), in only a week after receipt of the synthetic DNA fragments. The technical advance that we describe here facilitates rapid responses to emerging viruses as it enables the real-time generation and functional characterization of evolving RNA virus variants during an outbreak.


A yeast-based synthetic genomics platform is used to reconstruct and characterize large RNA viruses from synthetic DNA fragments  this technique will facilitate the rapid analysis of RNA viruses, such as SARS-CoV-2, during an outbreak.


  
A mycobacterial ABC transporter mediates the uptake of hydrophilic compounds 期刊论文
NATURE, 2020, 580 (7803) : 409-+
作者:  Al-Shayeb, Basem;  Sachdeva, Rohan;  Chen, Lin-Xing;  Ward, Fred;  Munk, Patrick;  Devoto, Audra;  Castelle, Cindy J.;  Olm, Matthew R.;  Bouma-Gregson, Keith;  Amano, Yuki;  He, Christine;  Meheust, Raphael;  Brooks, Brandon;  Thomas, Alex;  Levy, Adi;  Matheus-Carnevali, Paula;  Sun, Christine;  Goltsman, Daniela S. A.;  Borton, Mikayla A.;  Sharrar, Allison;  Jaffe, Alexander L.;  Nelson, Tara C.;  Kantor, Rose;  Keren, Ray;  Lane, Katherine R.;  Farag, Ibrahim F.;  Lei, Shufei;  Finstad, Kari;  Amundson, Ronald;  Anantharaman, Karthik;  Zhou, Jinglie;  Probst, Alexander J.;  Power, Mary E.;  Tringe, Susannah G.;  Li, Wen-Jun;  Wrighton, Kelly;  Harrison, Sue;  Morowitz, Michael;  Relman, David A.;  Doudna, Jennifer A.;  Lehours, Anne-Catherine;  Warren, Lesley;  Cate, Jamie H. D.;  Santini, Joanne M.;  Banfield, Jillian F.
收藏  |  浏览/下载:37/0  |  提交时间:2020/07/03

Mycobacterium tuberculosis (Mtb) is an obligate human pathogen and the causative agent of tuberculosis(1-3). Although Mtb can synthesize vitamin B-12 (cobalamin) de novo, uptake of cobalamin has been linked to pathogenesis of tuberculosis2. Mtb does not encode any characterized cobalamin transporter(4-6)  however, the gene rv1819c was found to be essential for uptake of cobalamin(1). This result is difficult to reconcile with the original annotation of Rv1819c as a protein implicated in the transport of antimicrobial peptides such as bleomycin(7). In addition, uptake of cobalamin seems inconsistent with the amino acid sequence, which suggests that Rv1819c has a bacterial ATP-binding cassette (ABC)-exporter fold1. Here, we present structures of Rv1819c, which reveal that the protein indeed contains the ABC-exporter fold, as well as a large water-filled cavity of about 7,700 angstrom(3), which enables the protein to transport the unrelated hydrophilic compounds bleomycin and cobalamin. On the basis of these structures, we propose that Rv1819c is a multi-solute transporter for hydrophilic molecules, analogous to the multidrug exporters of the ABC transporter family, which pump out structurally diverse hydrophobic compounds from cells(8-11).


  
Microbiota-targeted maternal antibodies protect neonates from enteric infection 期刊论文
NATURE, 2020, 577 (7791) : 543-+
作者:  Zheng, Wen;  Zhao, Wenjing;  Wu, Meng;  Song, Xinyang;  Caro, Florence;  Sun, Ximei;  Gazzaniga, Francesca;  Stefanetti, Giuseppe;  Oh, Sungwhan;  Mekalanos, John J.;  Kasper, Dennis L.
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/03

Although maternal antibodies protect newborn babies from infection(1,2), little is known about how protective antibodies are induced without prior pathogen exposure. Here we show that neonatal mice that lack the capacity to produce IgG are protected from infection with the enteric pathogen enterotoxigenic Escherichia coli by maternal natural IgG antibodies against the maternal microbiota when antibodies are delivered either across the placenta or through breast milk. By challenging pups that were fostered by either maternal antibody-sufficient or antibody-deficient dams, we found that IgG derived from breast milk was crucial for protection against mucosal disease induced by enterotoxigenic E. coli. IgG also provides protection against systemic infection by E. coli. Pups used the neonatal Fc receptor to transfer IgG from milk into serum. The maternal commensal microbiota can induce antibodies that recognize antigens expressed by enterotoxigenic E. coli and other Enterobacteriaceae species. Induction of maternal antibodies against a commensal Pantoea species confers protection against enterotoxigenic E. coli in pups. This role of the microbiota in eliciting protective antibodies to a specific neonatal pathogen represents an important host defence mechanism against infection in neonates.


Neonatal mice are protected against infection with the enteric pathogen enterotoxigenic Escherichia coli by maternally derived natural antibodies as well as by maternal commensal microbiota that induce antibodies that recognize antigens expressed by Enterobacteriaceae.


  
Demonstration of cooling by the Muon Ionization Cooling Experiment 期刊论文
NATURE, 2020, 578 (7793) : 53-+
作者:  Zheng, Wen;  Zhao, Wenjing;  Wu, Meng;  Song, Xinyang;  Caro, Florence;  Sun, Ximei;  Gazzaniga, Francesca;  Stefanetti, Giuseppe;  Oh, Sungwhan;  Mekalanos, John J.;  Kasper, Dennis L.
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

The use of accelerated beams of electrons, protons or ions has furthered the development of nearly every scientific discipline. However, high-energy muon beams of equivalent quality have not yet been delivered. Muon beams can be created through the decay of pions produced by the interaction of a proton beam with a target. Such '  tertiary'  beams have much lower brightness than those created by accelerating electrons, protons or ions. High-brightness muon beams comparable to those produced by state-of-the-art electron, proton and ion accelerators could facilitate the study of lepton-antilepton collisions at extremely high energies and provide well characterized neutrino beams(1-6). Such muon beams could be realized using ionization cooling, which has been proposed to increase muon-beam brightness(7,8). Here we report the realization of ionization cooling, which was confirmed by the observation of an increased number of low-amplitude muons after passage of the muon beam through an absorber, as well as an increase in the corresponding phase-space density. The simulated performance of the ionization cooling system is consistent with the measured data, validating designs of the ionization cooling channel in which the cooling process is repeated to produce a substantial cooling effect(9-11). The results presented here are an important step towards achieving the muon-beam quality required to search for phenomena at energy scales beyond the reach of the Large Hadron Collider at a facility of equivalent or reduced wfootprint(6).


  
Device-independent quantum random-number generation 期刊论文
NATURE, 2018, 562 (7728) : 548-+
作者:  Liu, Yang;  Zhao, Qi;  Li, Ming-Han;  Guan, Jian-Yu;  Zhang, Yanbao;  Bai, Bing;  Zhang, Weijun;  Liu, Wen-Zhao;  Wu, Cheng;  Yuan, Xiao;  Li, Hao;  Munro, W. J.;  Wang, Zhen;  You, Lixing;  Zhang, Jun;  Ma, Xiongfeng;  Fan, Jingyun;  Zhang, Qiang;  Pan, Jian-Wei
收藏  |  浏览/下载:11/0  |  提交时间:2019/11/27