GSTDTAP

浏览/检索结果: 共21条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
lncRNA SLERT controls phase separation of FC/DFCs to facilitate Pol I transcription 期刊论文
Science, 2021
作者:  Man Wu;  Guang Xu;  Chong Han;  Peng-Fei Luan;  Yu-Hang Xing;  Fang Nan;  Liang-Zhong Yang;  Youkui Huang;  Zheng-Hu Yang;  Lin Shan;  Li Yang;  Jiaquan Liu;  Ling-Ling Chen
收藏  |  浏览/下载:42/0  |  提交时间:2021/08/10
Isolated boron in zeolite for oxidative dehydrogenation of propane 期刊论文
Science, 2021
作者:  Hang Zhou;  Xianfeng Yi;  Yu Hui;  Liang Wang;  Wei Chen;  Yucai Qin;  Ming Wang;  Jiabi Ma;  Xuefeng Chu;  Yeqing Wang;  Xin Hong;  Zifeng Chen;  Xiangju Meng;  Hai Wang;  Qiuyan Zhu;  Lijuan Song;  Anmin Zheng;  Feng-Shou Xiao
收藏  |  浏览/下载:41/0  |  提交时间:2021/04/06
Multiphase buffer theory explains contrasts in atmospheric aerosol acidity 期刊论文
Science, 2020
作者:  Guangjie Zheng;  Hang Su;  Siwen Wang;  Meinrat O. Andreae;  Ulrich Pöschl;  Yafang Cheng
收藏  |  浏览/下载:51/0  |  提交时间:2020/09/14
Proton-assisted growth of ultra-flat graphene films 期刊论文
NATURE, 2020, 577 (7789) : 204-+
作者:  Yuan, Guowen;  Lin, Dongjing;  Wang, Yong;  Huang, Xianlei;  Chen, Wang;  Xie, Xuedong;  Zong, Junyu;  Yuan, Qian-Qian;  Zheng, Hang;  Wang, Di;  Xu, Jie;  Li, Shao-Chun;  Zhang, Yi;  Sun, Jian;  Xi, Xiaoxiang;  Gao, Libo
收藏  |  浏览/下载:32/0  |  提交时间:2020/07/03

Graphene films grown by chemical vapour deposition have unusual physical and chemical properties that offer promise for applications such as flexible electronics and high-frequency transistors(1-10). However, wrinkles invariably form during growth because of the strong coupling to the substrate, and these limit the large-scale homogeneity of the film(1-4,11,12). Here we develop a proton-assisted method of chemical vapour deposition to grow ultra-flat graphene films that are wrinkle-free. Our method of proton penetration(13-17) and recombination to form hydrogen can also reduce the wrinkles formed during traditional chemical vapour deposition of graphene. Some of the wrinkles disappear entirely, owing to the decoupling of van der Waals interactions and possibly an increase in distance from the growth surface. The electronic band structure of the as-grown graphene films shows a V-shaped Dirac cone and a linear dispersion relation within the atomic plane or across an atomic step, confirming the decoupling from the substrate. The ultra-flat nature of the graphene films ensures that their surfaces are easy to clean after a wet transfer process. A robust quantum Hall effect appears even at room temperature in a device with a linewidth of 100 micrometres. Graphene films grown by proton-assisted chemical vapour deposition should largely retain their intrinsic performance, and our method should be easily generalizable to other nanomaterials for strain and doping engineering.


  
Cryo-EM structure of SWI/SNF complex bound to a nucleosome 期刊论文
NATURE, 2020
作者:  Hang, Saiyu;  Paik, Donggi;  Yao, Lina;  Kim, Eunha;  Trinath, Jamma;  Lu, Jingping;  Ha, Soyoung;  Nelson, Brandon N.;  Kelly, Samantha P.;  Wu, Lin;  Zheng, Ye;  Longman, Randy S.;  Rastinejad, Fraydoon;  Devlin, A. Sloan;  Krout, Michael R.;  Fischbach, Michael A.;  Littman, Dan R.;  Huh, Jun R.
收藏  |  浏览/下载:52/0  |  提交时间:2020/07/03

The chromatin-remodelling complex SWI/SNF is highly conserved and has critical roles in various cellular processes, including transcription and DNA-damage repair(1,2). It hydrolyses ATP to remodel chromatin structure by sliding and evicting histone octamers(3-8), creating DNA regions that become accessible to other essential factors. However, our mechanistic understanding of the remodelling activity is hindered by the lack of a high-resolution structure of complexes from this family. Here we report the cryo-electron microscopy structure of Saccharomyces cerevisiae SWI/SNF bound to a nucleosome, at near-atomic resolution. In the structure, the actin-related protein (Arp) module is sandwiched between the ATPase and the rest of the complex, with the Snf2 helicase-SANT associated (HSA) domain connecting all modules. The body contains an assembly scaffold composed of conserved subunits Snf12 (also known as SMARCD or BAF60), Snf5 (also known as SMARCB1, BAF47 or INI1) and an asymmetric dimer of Swi3 (also known as SMARCC, BAF155 or BAF170). Another conserved subunit, Swi1 (also known as ARID1 or BAF250), resides in the core of SWI/SNF, acting as a molecular hub. We also observed interactions between Snf5 and the histones at the acidic patch, which could serve as an anchor during active DNA translocation. Our structure enables us to map and rationalize a subset of cancer-related mutations in the human SWI/SNF complex and to propose a model for how SWI/SNF recognizes and remodels the +1 nucleosome to generate nucleosome-depleted regions during gene activation(9).


The cryo-electron microscopy structure of the yeast SWI/SNF complex bound to a nucleosome substrate provides insights into the chromatin-remodelling function of this family of protein complexes and suggests mechanisms by which the mutated proteins may cause cancer.


  
Negative supercoil at gene boundaries modulates gene topology 期刊论文
NATURE, 2020, 577 (7792) : 701-+
作者:  Yuan, Guowen;  Lin, Dongjing;  Wang, Yong;  Huang, Xianlei;  Chen, Wang;  Xie, Xuedong;  Zong, Junyu;  Yuan, Qian-Qian;  Zheng, Hang;  Wang, Di;  Xu, Jie;  Li, Shao-Chun;  Zhang, Yi;  Sun, Jian;  Xi, Xiaoxiang;  Gao, Libo
收藏  |  浏览/下载:55/0  |  提交时间:2020/07/03

Transcription challenges the integrity of replicating chromosomes by generating topological stress and conflicts with forks(1,2). The DNA topoisomerases Top1 and Top2 and the HMGB family protein Hmo1 assist DNA replication and transcription(3-6). Here we describe the topological architecture of genes in Saccharomyces cerevisiae during the G1 and S phases of the cell cycle. We found under-wound DNA at gene boundaries and over-wound DNA within coding regions. This arrangement does not depend on Pol II or S phase. Top2 and Hmo1 preserve negative supercoil at gene boundaries, while Top1 acts at coding regions. Transcription generates RNA-DNA hybrids within coding regions, independently of fork orientation. During S phase, Hmo1 protects under-wound DNA from Top2, while Top2 confines Pol II and Top1 at coding units, counteracting transcription leakage and aberrant hybrids at gene boundaries. Negative supercoil at gene boundaries prevents supercoil diffusion and nucleosome repositioning at coding regions. DNA looping occurs at Top2 clusters. We propose that Hmo1 locks gene boundaries in a cruciform conformation and, with Top2, modulates the architecture of genes that retain the memory of the topological arrangements even when transcription is repressed.


  
Modeling the aging process of black carbon during atmospheric transport using a new approach: a case study in Beijing 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (14) : 9663-9680
作者:  Zhang, Yuxuan;  Li, Meng;  Cheng, Yafang;  Geng, Guannan;  Hong, Chaopeng;  Li, Haiyan;  Li, Xin;  Tong, Dan;  Wu, Nana;  Zhang, Xin;  Zheng, Bo;  Zheng, Yixuan;  Bo, Yu;  Su, Hang;  Zhang, Qiang
收藏  |  浏览/下载:29/0  |  提交时间:2019/11/27
Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990-2017: drivers, speciation and ozone formation potential 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (13) : 8897-8913
作者:  Li, Meng;  Zhang, Qiang;  Zheng, Bo;  Tong, Dan;  Lei, Yu;  Liu, Fei;  Hong, Chaopeng;  Kang, Sicong;  Yan, Liu;  Zhang, Yuxuan;  Bo, Yu;  Su, Hang;  Cheng, Yafang;  He, Kebin
收藏  |  浏览/下载:34/0  |  提交时间:2019/11/27
Candida albicans gains azole resistance by altering sphingolipid composition (vol 9, 4495, 2018) 期刊论文
NATURE COMMUNICATIONS, 2019, 10
作者:  Gao, Jiaxin;  Wang, Haitao;  Li, Zeyao;  Wong, Ada Hang-Heng;  Wang, Yi-Zheng;  Guo, Yahui;  Lin, Xin;  Zeng, Guisheng;  Wang, Yue;  Wang, Jianbin
收藏  |  浏览/下载:21/0  |  提交时间:2019/11/27
新疆阿尔泰富锂伟晶岩锆石中Ce负异常的形成机制研究 项目
项目编号:41873030; 经费:600000(CNY); 起止日期:2019 / dc_date_end
项目负责人:  吕正航
收藏  |  浏览/下载:6/0  |  提交时间:2019/11/27