GSTDTAP

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
International evaluation of an AI system for breast cancer screening 期刊论文
NATURE, 2020, 577 (7788) : 89-+
作者:  McKinney, Scott Mayer;  Sieniek, Marcin;  Godbole, Varun;  Godwin, Jonathan;  Antropova, Natasha;  Ashrafian, Hutan;  Back, Trevor;  Chesus, Mary;  Corrado, Greg C.;  Darzi, Ara;  Etemadi, Mozziyar;  Garcia-Vicente, Florencia;  Gilbert, Fiona J.;  Halling-Brown, Mark;  Hassabis, Demis;  Jansen, Sunny;  Karthikesalingam, Alan;  Kelly, Christopher J.;  King, Dominic;  Ledsam, Joseph R.;  Melnick, David;  Mostofi, Hormuz;  Peng, Lily;  Reicher, Joshua Jay;  Romera-Paredes, Bernardino;  Sidebottom, Richard;  Suleyman, Mustafa;  Tse, Daniel;  Young, Kenneth C.;  De Fauw, Jeffrey;  Shetty, Shravya
收藏  |  浏览/下载:81/0  |  提交时间:2020/07/03

Screening mammography aims to identify breast cancer at earlier stages of the disease, when treatment can be more successful(1). Despite the existence of screening programmes worldwide, the interpretation of mammograms is affected by high rates of false positives and false negatives(2). Here we present an artificial intelligence (AI) system that is capable of surpassing human experts in breast cancer prediction. To assess its performance in the clinical setting, we curated a large representative dataset from the UK and a large enriched dataset from the USA. We show an absolute reduction of 5.7% and 1.2% (USA and UK) in false positives and 9.4% and 2.7% in false negatives. We provide evidence of the ability of the system to generalize from the UK to the USA. In an independent study of six radiologists, the AI system outperformed all of the human readers: the area under the receiver operating characteristic curve (AUC-ROC) for the AI system was greater than the AUC-ROC for the average radiologist by an absolute margin of 11.5%. We ran a simulation in which the AI system participated in the double-reading process that is used in the UK, and found that the AI system maintained non-inferior performance and reduced the workload of the second reader by 88%. This robust assessment of the AI system paves the way for clinical trials to improve the accuracy and efficiency of breast cancer screening.


  
Improved protein structure prediction using potentials from deep learning 期刊论文
NATURE, 2020, 577 (7792) : 706-+
作者:  Ma, Runze;  Cao, Duanyun;  Zhu, Chongqin;  Tian, Ye;  Peng, Jinbo;  Guo, Jing;  Chen, Ji;  Li, Xin-Zheng;  Francisco, Joseph S.;  Zeng, Xiao Cheng;  Xu, Li-Mei;  Wang, En-Ge;  Jiang, Ying
收藏  |  浏览/下载:165/0  |  提交时间:2020/07/03

Protein structure prediction can be used to determine the three-dimensional shape of a protein from its amino acid sequence(1). This problem is of fundamental importance as the structure of a protein largely determines its function(2)  however, protein structures can be difficult to determine experimentally. Considerable progress has recently been made by leveraging genetic information. It is possible to infer which amino acid residues are in contact by analysing covariation in homologous sequences, which aids in the prediction of protein structures(3). Here we show that we can train a neural network to make accurate predictions of the distances between pairs of residues, which convey more information about the structure than contact predictions. Using this information, we construct a potential of mean force(4) that can accurately describe the shape of a protein. We find that the resulting potential can be optimized by a simple gradient descent algorithm to generate structures without complex sampling procedures. The resulting system, named AlphaFold, achieves high accuracy, even for sequences with fewer homologous sequences. In the recent Critical Assessment of Protein Structure Prediction(5) (CASP13)-a blind assessment of the state of the field-AlphaFold created high-accuracy structures (with template modelling (TM) scores(6) of 0.7 or higher) for 24 out of 43 free modelling domains, whereas the next best method, which used sampling and contact information, achieved such accuracy for only 14 out of 43 domains. AlphaFold represents a considerable advance in protein-structure prediction. We expect this increased accuracy to enable insights into the function and malfunction of proteins, especially in cases for which no structures for homologous proteins have been experimentally determined(7).


  
Evaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America 期刊论文
ATMOSPHERIC RESEARCH, 2019, 217: 37-48
作者:  Palomino-Angel, Sebastian;  Anaya-Acevedo, Jesus A.;  Botero, Blanca A.
收藏  |  浏览/下载:14/0  |  提交时间:2019/04/09
TRMM  3B42  IMERG  Precipitation estimation  Biogeographic Choco  Accuracy assessment  
Assessing reference evapotranspiration estimation from reanalysis weather products. An application to the Iberian Peninsula 期刊论文
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2017, 37 (5)
作者:  Martins, Diogo S.;  Paredes, Paula;  Raziei, Tayeb;  Pires, Carlos;  Cadima, Jorge;  Pereira, Luis S.
收藏  |  浏览/下载:17/0  |  提交时间:2019/04/09
accuracy indicators  ERA-Interim reanalysis  FAO Penman-Monteith ETo  NCEP  NCAR blended reanalysis  overestimation of wind speed  weather variables assessment