GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

已选(0)清除 条数/页:   排序方式:
大地震具有更强的发震深度瞬时深化能力 快报文章
地球科学快报,2020年第21期
作者:  赵纪东
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:433/0  |  提交时间:2020/11/09
Seismic  Dependent Transient  
Dopamine D2 receptors in discrimination learning and spine enlargement 期刊论文
NATURE, 2020, 579 (7800) : 555-+
作者:  Luo, Zhaochu;  Hrabec, Ales;  Dao, Trong Phuong;  Sala, Giacomo;  Finizio, Simone;  Feng, Junxiao;  Mayr, Sina;  Raabe, Joerg;  Gambardella, Pietro;  Heyderman, Laura J.
收藏  |  浏览/下载:64/0  |  提交时间:2020/07/03

Detection of dopamine dips by neurons that express dopamine D2 receptors in the striatum is used to refine generalized reward conditioning mediated by dopamine D1 receptors.


Dopamine D2 receptors (D2Rs) are densely expressed in the striatum and have been linked to neuropsychiatric disorders such as schizophrenia(1,2). High-affinity binding of dopamine suggests that D2Rs detect transient reductions in dopamine concentration (the dopamine dip) during punishment learning(3-5). However, the nature and cellular basis of D2R-dependent behaviour are unclear. Here we show that tone reward conditioning induces marked stimulus generalization in a manner that depends on dopamine D1 receptors (D1Rs) in the nucleus accumbens (NAc) of mice, and that discrimination learning refines the conditioning using a dopamine dip. In NAc slices, a narrow dopamine dip (as short as 0.4 s) was detected by D2Rs to disinhibit adenosine A(2A) receptor (A(2A)R)-mediated enlargement of dendritic spines in D2R-expressing spiny projection neurons (D2-SPNs). Plasticity-related signalling by Ca2+/calmodulin-dependent protein kinase II and A(2A)Rs in the NAc was required for discrimination learning. By contrast, extinction learning did not involve dopamine dips or D2-SPNs. Treatment with methamphetamine, which dysregulates dopamine signalling, impaired discrimination learning and spine enlargement, and these impairments were reversed by a D2R antagonist. Our data show that D2Rs refine the generalized reward learning mediated by D1Rs.


  
Stress- and ubiquitylation-dependent phase separation of the proteasome 期刊论文
NATURE, 2020, 578 (7794) : 296-+
作者:  Jewell, Jessica;  Emmerling, Johannes;  Vinichenko, Vadim;  Bertram, Christoph;  Berger, Loic;  Daly, Hannah E.;  Keppo, Ilkka;  Krey, Volker;  Gernaat, David E. H. J.;  Fragkiadakis, Kostas;  McCollum, David;  Paroussas, Leonidas;  Riahi, Keywan;  Tavoni, Massimo;  van Vuuren, Detlef
收藏  |  浏览/下载:33/0  |  提交时间:2020/07/03

The proteasome is a major proteolytic machine that regulates cellular proteostasis through selective degradation of ubiquitylated proteins(1,2). A number of ubiquitin-related molecules have recently been found to be involved in the regulation of biomolecular condensates or membraneless organelles, which arise by liquid-liquid phase separation of specific biomolecules, including stress granules, nuclear speckles and autophagosomes(3-8), but it remains unclear whether the proteasome also participates in such regulation. Here we reveal that proteasome-containing nuclear foci form under acute hyperosmotic stress. These foci are transient structures that contain ubiquitylated proteins, p97 (also known as valosin-containing protein (VCP)) and multiple proteasome-interacting proteins, which collectively constitute a proteolytic centre. The major substrates for degradation by these foci were ribosomal proteins that failed to properly assemble. Notably, the proteasome foci exhibited properties of liquid droplets. RAD23B, a substrate-shuttling factor for the proteasome, and ubiquitylated proteins were necessary for formation of proteasome foci. In mechanistic terms, a liquid-liquid phase separation was triggered by multivalent interactions of two ubiquitin-associated domains of RAD23B and ubiquitin chains consisting of four or more ubiquitin molecules. Collectively, our results suggest that ubiquitin-chain-dependent phase separation induces the formation of a nuclear proteolytic compartment that promotes proteasomal degradation.


Hyperosmotic stress leads to a phase separation of the proteasome, triggered by interactions between RAD23B and ubiquitylated proteins, which bring together p97 and proteasome-associated proteins into nuclear proteolytic foci.