GSTDTAP

浏览/检索结果: 共12条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
欧研究开发的AI模型可检测农业相关的多种气候灾害 快报文章
气候变化快报,2025年第8期
作者:  董利苹 杜海霞
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:422/0  |  提交时间:2025/04/20
Expert-driven  Artificial Intelligence Model  Detect  Climate Hazards  
Fourth defence molecule completes antiviral line-up 期刊论文
NATURE, 2020, 581 (7808) : 266-267
作者:  Marshall, Michael
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Toll-like receptors can initiate an immune response when they detect signs of a viral or microbial threat. New insight into how such receptor activation drives defence programs should aid our efforts to understand autoimmune diseases.


Key adaptor protein found in a pathway that drives interferon production.


  
Massively multiplexed nucleic acid detection with Cas13 期刊论文
NATURE, 2020, 582 (7811) : 277-+
作者:  Mahato, Biraj;  Kaya, Koray Dogan;  Fan, Yan;  Sumien, Nathalie;  Shetty, Ritu A.;  Zhang, Wei;  Davis, Delaney;  Mock, Thomas;  Batabyal, Subrata;  Ni, Aiguo;  Mohanty, Samarendra;  Han, Zongchao;  Farjo, Rafal;  Forster, Michael J.;  Swaroop, Anand;  Chavala, Sai H.
收藏  |  浏览/下载:83/0  |  提交时间:2020/07/03

CRISPR-based nucleic acid detection is used in a platform that can simultaneously detect 169 human-associated viruses in multiple samples, providing scalable, multiplexed pathogen detection aimed at routine surveillance for public health.


The great majority of globally circulating pathogens go undetected, undermining patient care and hindering outbreak preparedness and response. To enable routine surveillance and comprehensive diagnostic applications, there is a need for detection technologies that can scale to test many samples(1-3)while simultaneously testing for many pathogens(4-6). Here, we develop Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids (CARMEN), a platform for scalable, multiplexed pathogen detection. In the CARMEN platform, nanolitre droplets containing CRISPR-based nucleic acid detection reagents(7)self-organize in a microwell array(8)to pair with droplets of amplified samples, testing each sample against each CRISPR RNA (crRNA) in replicate. The combination of CARMEN and Cas13 detection (CARMEN-Cas13) enables robust testing of more than 4,500 crRNA-target pairs on a single array. Using CARMEN-Cas13, we developed a multiplexed assay that simultaneously differentiates all 169 human-associated viruses with at least 10 published genome sequences and rapidly incorporated an additional crRNA to detect the causative agent of the 2020 COVID-19 pandemic. CARMEN-Cas13 further enables comprehensive subtyping of influenza A strains and multiplexed identification of dozens of HIV drug-resistance mutations. The intrinsic multiplexing and throughput capabilities of CARMEN make it practical to scale, as miniaturization decreases reagent cost per test by more than 300-fold. Scalable, highly multiplexed CRISPR-based nucleic acid detection shifts diagnostic and surveillance efforts from targeted testing of high-priority samples to comprehensive testing of large sample sets, greatly benefiting patients and public health(9-11).


  
CRISPR tool scales up to interrogate a huge line-up of viral suspects 期刊论文
NATURE, 2020, 582 (7811) : 188-189
作者:  Gerner, Romana R.;  Raffatellu, Manuela
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

Rapid, reliable identification of an unknown viral infection is challenging. Use of CRISPR technology can simultaneously detect nucleic acids of many viruses and pinpoint specific ones, such as the virus that causes COVID-19.


A diagnostic platform enables rapid detection of nucleic-acid sequences.


  
Non-volatile electric control of spin-charge conversion in a SrTiO3 Rashba system 期刊论文
NATURE, 2020, 580 (7804) : 483-+
作者:  Collombet, Samuel;  Ranisavljevic, Noemie;  Nagano, Takashi;  Varnai, Csilla;  Shisode, Tarak;  Leung, Wing;  Piolot, Tristan;  Galupa, Rafael;  Borensztein, Maud;  Servant, Nicolas;  Fraser, Peter;  Ancelin, Katia;  Heard, Edith
收藏  |  浏览/下载:41/0  |  提交时间:2020/07/03

The polarization direction of a ferroelectric-like state can be used to control the conversion of spin currents into charge currents at the surface of strontium titanate, a non-magnetic oxide.


After 50 years of development, the technology of today'  s electronics is approaching its physical limits, with feature sizes smaller than 10 nanometres. It is also becoming clear that the ever-increasing power consumption of information and communication systems(1) needs to be contained. These two factors require the introduction of non-traditional materials and state variables. As recently highlighted(2), the remanence associated with collective switching in ferroic systems is an appealing way to reduce power consumption. A promising approach is spintronics, which relies on ferromagnets to provide non-volatility and to generate and detect spin currents(3). However, magnetization reversal by spin transfer torques(4) is a power-consuming process. This is driving research on multiferroics to achieve low-power electric-field control of magnetization(5), but practical materials are scarce and magnetoelectric switching remains difficult to control. Here we demonstrate an alternative strategy to achieve low-power spin detection, in a non-magnetic system. We harness the electric-field-induced ferroelectric-like state of strontium titanate (SrTiO3)(6-9) to manipulate the spin-orbit properties(10) of a two-dimensional electron gas(11), and efficiently convert spin currents into positive or negative charge currents, depending on the polarization direction. This non-volatile effect opens the way to the electric-field control of spin currents and to ultralow-power spintronics, in which non-volatility would be provided by ferroelectricity rather than by ferromagnetism.


  
Mechanisms and therapeutic implications of hypermutation in gliomas 期刊论文
NATURE, 2020, 580 (7804) : 517-+
作者:  Feng, Kaibo;  Quevedo, Raundi E.;  Kohrt, Jeffrey T.;  Oderinde, Martins S.;  Reilly, Usa;  White, M. Christina
收藏  |  浏览/下载:42/0  |  提交时间:2020/07/03

A high tumour mutational burden (hypermutation) is observed in some gliomas(1-5)  however, the mechanisms by which hypermutation develops and whether it predicts the response to immunotherapy are poorly understood. Here we comprehensively analyse the molecular determinants of mutational burden and signatures in 10,294 gliomas. We delineate two main pathways to hypermutation: a de novo pathway associated with constitutional defects in DNA polymerase and mismatch repair (MMR) genes, and a more common post-treatment pathway, associated with acquired resistance driven by MMR defects in chemotherapy-sensitive gliomas that recur after treatment with the chemotherapy drug temozolomide. Experimentally, the mutational signature of post-treatment hypermutated gliomas was recapitulated by temozolomide-induced damage in cells with MMR deficiency. MMR-deficient gliomas were characterized by a lack of prominent T cell infiltrates, extensive intratumoral heterogeneity, poor patient survival and a low rate of response to PD-1 blockade. Moreover, although bulk analyses did not detect microsatellite instability in MMR-deficient gliomas, single-cell whole-genome sequencing analysis of post-treatment hypermutated glioma cells identified microsatellite mutations. These results show that chemotherapy can drive the acquisition of hypermutated populations without promoting a response to PD-1 blockade and supports the diagnostic use of mutational burden and signatures in cancer.


Temozolomide therapy seems to lead to mismatch repair deficiency and hypermutation in gliomas, but not to an increase in response to immunotherapy.


  
Olfactory receptor and circuit evolution promote host specialization 期刊论文
NATURE, 2020
作者:  Chen, Tse-An;  Chuu, Chih-Piao;  Tseng, Chien-Chih;  Wen, Chao-Kai;  Wong, H. -S. Philip;  Pan, Shuangyuan;  Li, Rongtan;  Chao, Tzu-Ang;  Chueh, Wei-Chen;  Zhang, Yanfeng;  Fu, Qiang;  Yakobson, Boris I.;  Chang, Wen-Hao;  Li, Lain-Jong
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

The evolution of animal behaviour is poorly understood(1,2). Despite numerous correlations between interspecific divergence in behaviour and nervous system structure and function, demonstrations of the genetic basis of these behavioural differences remain rare(3-5). Here we develop a neurogenetic model, Drosophila sechellia, a species that displays marked differences in behaviour compared to its close cousin Drosophila melanogaster(6,7), which are linked to its extreme specialization on noni fruit (Morinda citrifolia)(8-16). Using calcium imaging, we identify olfactory pathways in D. sechellia that detect volatiles emitted by the noni host. Our mutational analysis indicates roles for different olfactory receptors in long- and short-range attraction to noni, and our cross-species allele-transfer experiments demonstrate that the tuning of one of these receptors is important for species-specific host-seeking. We identify the molecular determinants of this functional change, and characterize their evolutionary origin and behavioural importance. We perform circuit tracing in the D. sechellia brain, and find that receptor adaptations are accompanied by increased sensory pooling onto interneurons as well as species-specific central projection patterns. This work reveals an accumulation of molecular, physiological and anatomical traits that are linked to behavioural divergence between species, and defines a model for investigating speciation and the evolution of the nervous system.


A neurogenetic model, Drosophila sechellia-a relative of Drosophila melanogaster that has developed an extreme specialization for a single host plant-sheds light on the evolution of interspecific differences in behaviour.


  
Dopamine D2 receptors in discrimination learning and spine enlargement 期刊论文
NATURE, 2020, 579 (7800) : 555-+
作者:  Luo, Zhaochu;  Hrabec, Ales;  Dao, Trong Phuong;  Sala, Giacomo;  Finizio, Simone;  Feng, Junxiao;  Mayr, Sina;  Raabe, Joerg;  Gambardella, Pietro;  Heyderman, Laura J.
收藏  |  浏览/下载:61/0  |  提交时间:2020/07/03

Detection of dopamine dips by neurons that express dopamine D2 receptors in the striatum is used to refine generalized reward conditioning mediated by dopamine D1 receptors.


Dopamine D2 receptors (D2Rs) are densely expressed in the striatum and have been linked to neuropsychiatric disorders such as schizophrenia(1,2). High-affinity binding of dopamine suggests that D2Rs detect transient reductions in dopamine concentration (the dopamine dip) during punishment learning(3-5). However, the nature and cellular basis of D2R-dependent behaviour are unclear. Here we show that tone reward conditioning induces marked stimulus generalization in a manner that depends on dopamine D1 receptors (D1Rs) in the nucleus accumbens (NAc) of mice, and that discrimination learning refines the conditioning using a dopamine dip. In NAc slices, a narrow dopamine dip (as short as 0.4 s) was detected by D2Rs to disinhibit adenosine A(2A) receptor (A(2A)R)-mediated enlargement of dendritic spines in D2R-expressing spiny projection neurons (D2-SPNs). Plasticity-related signalling by Ca2+/calmodulin-dependent protein kinase II and A(2A)Rs in the NAc was required for discrimination learning. By contrast, extinction learning did not involve dopamine dips or D2-SPNs. Treatment with methamphetamine, which dysregulates dopamine signalling, impaired discrimination learning and spine enlargement, and these impairments were reversed by a D2R antagonist. Our data show that D2Rs refine the generalized reward learning mediated by D1Rs.


  
Limits on gas impermeability of graphene 期刊论文
NATURE, 2020, 579 (7798) : 229-+
作者:  Pagano, Justin K.;  Xie, Jing;  Erickson, Karla A.;  Cope, Stephen K.;  Scott, Brian L.;  Wu, Ruilian;  Waterman, Rory;  Morris, David E.;  Yang, Ping;  Gagliardi, Laura;  Kiplinger, Jaqueline L.
收藏  |  浏览/下载:34/0  |  提交时间:2020/07/03

Despite being only one-atom thick, defect-free graphene is considered to be completely impermeable to all gases and liquids(1-10). This conclusion is based on theory(3-8) and supported by experiments(1,9,10) that could not detect gas permeation through micrometre-size membranes within a detection limit of 10(5) to 10(6) atoms per second. Here, using small monocrystalline containers tightly sealed with graphene, we show that defect-free graphene is impermeable with an accuracy of eight to nine orders of magnitude higher than in the previous experiments. We are capable of discerning (but did not observe) permeation of just a few helium atoms per hour, and this detection limit is also valid for all other gases tested (neon, nitrogen, oxygen, argon, krypton and xenon), except for hydrogen. Hydrogen shows noticeable permeation, even though its molecule is larger than helium and should experience a higher energy barrier. This puzzling observation is attributed to a two-stage process that involves dissociation of molecular hydrogen at catalytically active graphene ripples, followed by adsorbed atoms flipping to the other side of the graphene sheet with a relatively low activation energy of about 1.0 electronvolt, a value close to that previously reported for proton transport(11,12). Our work provides a key reference for the impermeability of two-dimensional materials and is important from a fundamental perspective and for their potential applications.


  
Discriminating alpha-synuclein strains in Parkinson's disease and multiple system atrophy 期刊论文
NATURE, 2020, 578 (7794) : 273-+
作者:  Senior, Andrew W.;  Evans, Richard;  Jumper, John;  Kirkpatrick, James;  Sifre, Laurent;  Green, Tim;  Qin, Chongli;  Zidek, Augustin;  Nelson, Alexander W. R.;  Bridgland, Alex;  Penedones, Hugo;  Petersen, Stig;  Simonyan, Karen;  Crossan, Steve;  Kohli, Pushmeet;  Jones, David T.;  Silver, David;  Kavukcuoglu, Koray;  Hassabis, Demis
收藏  |  浏览/下载:57/0  |  提交时间:2020/07/03

Synucleinopathies are neurodegenerative diseases that are associated with the misfolding and aggregation of alpha-synuclein, including Parkinson'  s disease, dementia with Lewy bodies and multiple system atrophy(1). Clinically, it is challenging to differentiate Parkinson'  s disease and multiple system atrophy, especially at the early stages of disease(2). Aggregates of alpha-synuclein in distinct synucleinopathies have been proposed to represent different conformational strains of alpha-synuclein that can self-propagate and spread from cell to cell(3-6). Protein misfolding cyclic amplification (PMCA) is a technique that has previously been used to detect alpha-synuclein aggregates in samples of cerebrospinal fluid with high sensitivity and specificity(7,8). Here we show that the alpha-synuclein-PMCA assay can discriminate between samples of cerebrospinal fluid from patients diagnosed with Parkinson'  s disease and samples from patients with multiple system atrophy, with an overall sensitivity of 95.4%. We used a combination of biochemical, biophysical and biological methods to analyse the product of alpha-synuclein-PMCA, and found that the characteristics of the alpha-synuclein aggregates in the cerebrospinal fluid could be used to readily distinguish between Parkinson'  s disease and multiple system atrophy. We also found that the properties of aggregates that were amplified from the cerebrospinal fluid were similar to those of aggregates that were amplified from the brain. These findings suggest that alpha-synuclein aggregates that are associated with Parkinson'  s disease and multiple system atrophy correspond to different conformational strains of alpha-synuclein, which can be amplified and detected by alpha-synuclein-PMCA. Our results may help to improve our understanding of the mechanism of alpha-synuclein misfolding and the structures of the aggregates that are implicated in different synucleinopathies, and may also enable the development of a biochemical assay to discriminate between Parkinson'  s disease and multiple system atrophy.


Protein misfolding cyclic amplification (PMCA) technology can discriminate between patients with Parkinson'  s disease and patients with multiple system atrophy on the basis of the characteristics of the alpha-synuclein aggregates in the cerebrospinal fluid.