GSTDTAP

浏览/检索结果: 共32条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
美国发布《2022年北极地区国家战略实施报告》 快报文章
地球科学快报,2025年第2期
作者:  刘文浩
Microsoft Word(20Kb)  |  收藏  |  浏览/下载:501/0  |  提交时间:2025/01/23
Arctic  Implementation Report for the 2022 National Strategy for the Arctic Region  
OSTP发布北极研究计划2025—2026年实施方案 快报文章
地球科学快报,2024年第24期
作者:  刘文浩
Microsoft Word(27Kb)  |  收藏  |  浏览/下载:505/0  |  提交时间:2024/12/24
IMPLEMENTATION PLAN 2025-2026  ARCTIC RESEARCH  
联合国环境规划署发布2024年适应差距报告 快报文章
气候变化快报,2024年第22期
作者:  刘燕飞
Microsoft Word(30Kb)  |  收藏  |  浏览/下载:479/1  |  提交时间:2024/11/19
adaptation  planning, implementation  finance  
美国发布《国家空间天气战略与行动计划》最新实施计划 快报文章
地球科学快报,2024年第3期
作者:  张树良
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:719/0  |  提交时间:2024/02/06
The National Space Weather Strategy And Action Plan  implementation plan  Space weather  
美国发布《<国家新污染物研究计划>实施计划》 快报文章
地球科学快报,2024年第3期
作者:  王立伟
Microsoft Word(472Kb)  |  收藏  |  浏览/下载:725/2  |  提交时间:2024/02/06
Emerging Contaminants  Implementation Plan  
欧美联合发布电动汽车充电基础设施技术建议 快报文章
气候变化快报,2023年第12期
作者:  董利苹
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:609/0  |  提交时间:2023/06/20
Government Funded Implementation  Electric Vehicle Charging Infrastructure  Transatlantic Technical Recommendations  
IARPC发布北极研究《2022—2024两年期实施计划》 快报文章
地球科学快报,2022年第24期
作者:  刘文浩
Microsoft Word(19Kb)  |  收藏  |  浏览/下载:733/2  |  提交时间:2022/12/25
Arctic  Biennial Implementation Plan 2022-2024  
NSF发布报告《“俯冲带四维”(SZ4D)实施计划2022》 快报文章
地球科学快报,2022年第22期
作者:  王立伟
Microsoft Word(19Kb)  |  收藏  |  浏览/下载:709/0  |  提交时间:2022/11/25
SZ4D  Implementation Plan  
Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals 期刊论文
NATURE, 2020
作者:  Grishin, Evgeni;  Malamud, Uri;  Perets, Hagai B.;  Wandel, Oliver;  Schaefer, Christoph M.
收藏  |  浏览/下载:33/0  |  提交时间:2020/07/03

The ongoing outbreak of coronavirus disease 2019 (COVID-19) has spread rapidly on a global scale. Although it is clear that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted through human respiratory droplets and direct contact, the potential for aerosol transmission is poorly understood(1-3). Here we investigated the aerodynamic nature of SARS-CoV-2 by measuring viral RNA in aerosols in different areas of two Wuhan hospitals during the outbreak of COVID-19 in February and March 2020. The concentration of SARS-CoV-2 RNA in aerosols that was detected in isolation wards and ventilated patient rooms was very low, but it was higher in the toilet areas used by the patients. Levels of airborne SARS-CoV-2 RNA in the most public areas was undetectable, except in two areas that were prone to crowding  this increase was possibly due to individuals infected with SARS-CoV-2 in the crowd. We found that some medical staff areas initially had high concentrations of viral RNA with aerosol size distributions that showed peaks in the submicrometre and/or supermicrometre regions  however, these levels were reduced to undetectable levels after implementation of rigorous sanitization procedures. Although we have not established the infectivity of the virus detected in these hospital areas, we propose that SARS-CoV-2 may have the potential to be transmitted through aerosols. Our results indicate that room ventilation, open space, sanitization of protective apparel, and proper use and disinfection of toilet areas can effectively limit the concentration of SARS-CoV-2 RNA in aerosols. Future work should explore the infectivity of aerosolized virus.


Aerodynamic analysis of SARS-CoV-2 RNA in two hospitals in Wuhan indicates that SARS-CoV-2 may have the potential to be transmitted through aerosols, although the infectivity of the virus RNA was not established in this study.


  
Experimental demonstration of memory-enhanced quantum communication 期刊论文
NATURE, 2020
作者:  Quinn, Robert A.;  Melnik, Alexey, V;  Vrbanac, Alison;  Fu, Ting;  Patras, Kathryn A.;  Christy, Mitchell P.;  Bodai, Zsolt;  Belda-Ferre, Pedro;  Tripathi, Anupriya;  Chung, Lawton K.;  Downes, Michael;  Welch, Ryan D.;  Quinn, Melissa;  Humphrey, Greg;  Panitchpakdi, Morgan;  Weldon, Kelly C.;  Aksenov, Alexander;  da Silva, Ricardo;  Avila-Pacheco, Julian;  Clish, Clary;  Bae, Sena;  Mallick, Himel;  Franzosa, Eric A.;  Lloyd-Price, Jason;  Bussell, Robert;  Thron, Taren;  Nelson, Andrew T.;  Wang, Mingxun;  Leszczynski, Eric;  Vargas, Fernando;  Gauglitz, Julia M.;  Meehan, Michael J.;  Gentry, Emily;  Arthur, Timothy D.;  Komor, Alexis C.;  Poulsen, Orit;  Boland, Brigid S.;  Chang, John T.;  Sandborn, William J.;  Lim, Meerana;  Garg, Neha;  Lumeng, Julie C.;  Xavier, Ramnik J.;  Kazmierczak, Barbara, I;  Jain, Ruchi;  Egan, Marie;  Rhee, Kyung E.;  Ferguson, David;  Raffatellu, Manuela;  Vlamakis, Hera;  Haddad, Gabriel G.;  Siegel, Dionicio;  Huttenhower, Curtis;  Mazmanian, Sarkis K.;  Evans, Ronald M.;  Nizet, Victor;  Knight, Rob;  Dorrestein, Pieter C.
收藏  |  浏览/下载:65/0  |  提交时间:2020/07/03

The ability to communicate quantum information over long distances is of central importance in quantum science and engineering(1). Although some applications of quantum communication such as secure quantum key distribution(2,3) are already being successfully deployed(4-7), their range is currently limited by photon losses and cannot be extended using straightforward measure-and-repeat strategies without compromising unconditional security(8). Alternatively, quantum repeaters(9), which utilize intermediate quantum memory nodes and error correction techniques, can extend the range of quantum channels. However, their implementation remains an outstanding challenge(10-16), requiring a combination of efficient and high-fidelity quantum memories, gate operations, and measurements. Here we use a single solid-state spin memory integrated in a nanophotonic diamond resonator(17-19) to implement asynchronous photonic Bell-state measurements, which are a key component of quantum repeaters. In a proof-of-principle experiment, we demonstrate high-fidelity operation that effectively enables quantum communication at a rate that surpasses the ideal loss-equivalent direct-transmission method while operating at megahertz clock speeds. These results represent a crucial step towards practical quantum repeaters and large-scale quantum networks(20,21).


A solid-state spin memory is used to demonstrate quantum repeater functionality, which has the potential to overcome photon losses involved in long-distance transmission of quantum information.