GSTDTAP

浏览/检索结果: 共53条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
The role of the planetary boundary layer parameterization schemes on the meteorological and aerosol pollution simulations: A review 期刊论文
ATMOSPHERIC RESEARCH, 2020, 239
作者:  Jia, Wenxing;  Zhang, Xiaoye
收藏  |  浏览/下载:18/0  |  提交时间:2020/08/18
PBL parameterization schemes  Meteorological parameters  PBL structures  Turbulent diffusion  Aerosol pollution  
Climatological-Scale Analysis of Intensive and Semi-intensive Aerosol Parameters Derived From AERONET Retrievals Over the Arctic 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (10)
作者:  AboEl-Fetouh, Y.;  39;Neill, N. T.
收藏  |  浏览/下载:20/0  |  提交时间:2020/07/02
Arctic climatology  intensive  extensive parameters  AERONET  particle size distribution  aerosol optical depth  effective radius  
Localization and delocalization of light in photonic moire lattices 期刊论文
NATURE, 2020, 577 (7788) : 42-+
作者:  Wang, Peng;  Zheng, Yuanlin;  Chen, Xianfeng;  Huang, Changming;  Kartashov, Yaroslav V.;  Torner, Lluis;  Konotop, Vladimir V.;  Ye, Fangwei
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

Moire lattices consist of two superimposed identical periodic structures with a relative rotation angle. Moire lattices have several applications in everyday life, including artistic design, the textile industry, architecture, image processing, metrology and interferometry. For scientific studies, they have been produced using coupled graphene-hexagonal boron nitride monolayers(1,2), graphene-graphene layers(3,4) and graphene quasicrystals on a silicon carbide surface(5). The recent surge of interest in moire lattices arises from the possibility of exploring many salient physical phenomena in such systems  examples include commensurable-incommensurable transitions and topological defects(2), the emergence of insulating states owing to band flattening(3,6), unconventional superconductivity(4) controlled by the rotation angle(7,8), the quantum Hall effect(9), the realization of non-Abelian gauge potentials(10) and the appearance of quasicrystals at special rotation angles(11). A fundamental question that remains unexplored concerns the evolution of waves in the potentials defined by moire lattices. Here we experimentally create two-dimensional photonic moire lattices, which-unlike their material counterparts-have readily controllable parameters and symmetry, allowing us to explore transitions between structures with fundamentally different geometries (periodic, general aperiodic and quasicrystal). We observe localization of light in deterministic linear lattices that is based on flatband physics(6), in contrast to previous schemes based on light diffusion in optical quasicrystals(12), where disorder is required(13) for the onset of Anderson localization(14) (that is, wave localization in random media). Using commensurable and incommensurable moire patterns, we experimentally demonstrate the twodimensional localization-delocalization transition of light. Moire lattices may feature an almost arbitrary geometry that is consistent with the crystallographic symmetry groups of the sublattices, and therefore afford a powerful tool for controlling the properties of light patterns and exploring the physics of periodic-aperiodic phase transitions and two-dimensional wavepacket phenomena relevant to several areas of science, including optics, acoustics, condensed matter and atomic physics.


  
On the Reliability of Variable-Rate Pumping Test Results: Sensitivity to Information Content of the Recorded Data 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (5)
作者:  Naderi, Mostafa;  Gupta, Hoshin, V
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/02
aquifer parameters  variable-rate pumping tests  time domain numerical integration  Duhamel'  s principle  confined  unconfined and leaky aquifers  information loss  
Scaling Point-Scale (Pedo)transfer Functions to Seamless Large-Domain Parameter Estimates for High-Resolution Distributed Hydrologic Modeling: An Example for the Rhine River 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (4)
作者:  Imhoff, R. O.;  van Verseveld, W. J.;  van Osnabrugge, B.;  Weerts, A. H.
收藏  |  浏览/下载:43/0  |  提交时间:2020/07/02
scaling  pedotransfer functions  regionalization  hydrological modeling  parameters  
Exploring dynamical phase transitions with cold atoms in an optical cavity 期刊论文
NATURE, 2020, 580 (7805) : 602-+
作者:  Halbach, Rebecca;  Miesen, Pascal;  Joosten, Joep;  Taskopru, Ezgi;  Rondeel, Inge;  Pennings, Bas;  Vogels, Chantal B. F.;  Merkling, Sarah H.;  Koenraadt, Constantianus J.;  Lambrechts, Louis;  van Rij, Ronald P.
收藏  |  浏览/下载:21/0  |  提交时间:2020/07/03

Interactions between light and an ensemble of strontium atoms in an optical cavity can serve as a testbed for studying dynamical phase transitions, which are currently not well understood.


Interactions between atoms and light in optical cavities provide a means of investigating collective (many-body) quantum physics in controlled environments. Such ensembles of atoms in cavities have been proposed for studying collective quantum spin models, where the atomic internal levels mimic a spin degree of freedom and interact through long-range interactions tunable by changing the cavity parameters(1-4). Non-classical steady-state phases arising from the interplay between atom-light interactions and dissipation of light from the cavity have previously been investigated(5-11). These systems also offer the opportunity to study dynamical phases of matter that are precluded from existence at equilibrium but can be stabilized by driving a system out of equilibrium(12-16), as demonstrated by recent experiments(17-22). These phases can also display universal behaviours akin to standard equilibrium phase transitions(8,23,24). Here, we use an ensemble of about a million strontium-88 atoms in an optical cavity to simulate a collective Lipkin-Meshkov-Glick model(25,26), an iconic model in quantum magnetism, and report the observation of distinct dynamical phases of matter in this system. Our system allows us to probe the dependence of dynamical phase transitions on system size, initial state and other parameters. These observations can be linked to similar dynamical phases in related systems, including the Josephson effect in superfluid helium(27), or coupled atomic(28) and solid-state polariton(29) condensates. The system itself offers potential for generation of metrologically useful entangled states in optical transitions, which could permit quantum enhancement in state-of-the-art atomic clocks(30,31).


  
Space-Based Analysis of the Cloud Thermodynamic Phase Transition for Varying Microphysical and Meteorological Regimes 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (6)
作者:  Coopman, Q.;  Riedi, J.;  Zeng, S.;  Garrett, T. J.
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/02
clouds  satellites  glaciation  meteorological parameters  
Submicrosecond entangling gate between trapped ions via Rydberg interaction 期刊论文
NATURE, 2020, 580 (7803) : 345-+
作者:  Chatterjee, Sourav;  Guidi, Mara;  Seeberger, Peter H.;  Gilmore, Kerry
收藏  |  浏览/下载:32/0  |  提交时间:2020/07/03

Generating quantum entanglement in large systems on timescales much shorter than the coherence time is key to powerful quantum simulation and computation. Trapped ions are among the most accurately controlled and best isolated quantum systems(1) with low-error entanglement gates operated within tens of microseconds using the vibrational motion of few-ion crystals(2,3). To exceed the level of complexity tractable by classical computers the main challenge is to realize fast entanglement operations in crystals made up of many ions (large ion crystals)(4). The strong dipole-dipole interactions in polar molecule(5) and Rydberg atom(6,7) systems allow much faster entangling gates, yet stable state-independent confinement comparable with trapped ions needs to be demonstrated in these systems(8). Here we combine the benefits of these approaches: we report a two-ion entangling gate with 700-nanosecond gate time that uses the strong dipolar interaction between trapped Rydberg ions, which we use to produce a Bell state with 78 per cent fidelity. The sources of gate error are identified and a total error of less than 0.2 per cent is predicted for experimentally achievable parameters. Furthermore, we predict that residual coupling to motional modes contributes an approximate gate error of 10(-4) in a large ion crystal of 100 ions. This provides a way to speed up and scale up trapped-ion quantum computers and simulators substantially.


  
Actinide 2-metallabiphenylenes that satisfy Huckel's rule 期刊论文
NATURE, 2020, 578 (7796) : 563-+
作者:  Achar, Yathish Jagadheesh;  Adhil, Mohamood;  Choudhary, Ramveer;  Gilbert, Nick;  Foiani, Marco
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

Aromaticity and antiaromaticity, as defined by Huckel'  s rule, are key ideas in organic chemistry, and are both exemplified in biphenylene(1-3)-a molecule that consists of two benzene rings joined by a four-membered ring at its core. Biphenylene analogues in which one of the benzene rings has been replaced by a different (4n + 2) pi-electron system have so far been associated only with organic compounds(4,5). In addition, efforts to prepare a zirconabiphenylene compound resulted in the isolation of a bis(alkyne) zirconocene complex instead(6). Here we report the synthesis and characterization of, to our knowledge, the first 2-metallabiphenylene compounds. Single-crystal X-ray diffraction studies reveal that these complexes have nearly planar, 11-membered metallatricycles with metrical parameters that compare well with those reported for biphenylene. Nuclear magnetic resonance spectroscopy, in addition to nucleus-independent chemical shift calculations, provides evidence that these complexes contain an antiaromatic cyclobutadiene ring and an aromatic benzene ring. Furthermore, spectroscopic evidence, Kohn-Sham molecular orbital compositions and natural bond orbital calculations suggest covalency and delocalization of the uranium f(2) electrons with the carbon-containing ligand.


The synthesis of uranium- and thorium-containing metallabiphenylenes demonstrates the ability of the actinides to stabilize aromatic/antiaromatic structures where transition metals have failed.


  
Diagnostic Evaluation of Large-Domain Hydrologic Models Calibrated Across the Contiguous United States 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (24) : 13991-14007
作者:  Rakovec, Oldrich;  Mizukami, Naoki;  Kumar, Rohini;  Newman, Andrew J.;  Thober, Stephan;  Wood, Andrew W.;  Clark, Martyn P.;  Samaniego, Luis
收藏  |  浏览/下载:23/0  |  提交时间:2020/02/17
spatially contiguous parameters  Variable Infiltration Capacity model  mesoscale Hydrologic Model  hydrologic model diagnosis  Multiscale Parameter Regionalization  evapotranspiration and runoff simulations