GSTDTAP

浏览/检索结果: 共10条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
IL-17a promotes sociability in mouse models of neurodevelopmental disorders 期刊论文
NATURE, 2020, 577 (7789) : 249-+
作者:  Reed, Michael Douglas;  Yim, Yeong Shin;  Wimmer, Ralf D.;  Kim, Hyunju;  Ryu, Changhyeon;  Welch, Gwyneth Margaret;  Andina, Matias;  King, Hunter Oren;  Waisman, Ari;  Halassa, Michael M.;  Huh, Jun R.;  Choi, Gloria B.
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

A subset of children with autism spectrum disorder appear to show an improvement in their behavioural symptoms during the course of a fever, a sign of systemic inflammation(1,2). Here we elucidate the molecular and neural mechanisms that underlie the beneficial effects of inflammation on social behaviour deficits in mice. We compared an environmental model of neurodevelopmental disorders in which mice were exposed to maternal immune activation (MIA) during embryogenesis(3,4) with mouse models that are genetically deficient for contactin-associated protein-like 2 (Cntnap2)(5), fragile X mental retardation-1 (Fmr1)(6) or Sh3 and multiple ankyrin repeat domains 3 (Shank3)(7). We establish that the social behaviour deficits in offspring exposed to MIA can be temporarily rescued by the inflammatory response elicited by the administration of lipopolysaccharide (LPS). This behavioural rescue was accompanied by a reduction in neuronal activity in the primary somatosensory cortex dysgranular zone (S1DZ), the hyperactivity of which was previously implicated in the manifestation of behavioural phenotypes associated with offspring exposed to MIA(8). By contrast, we did not observe an LPS-induced rescue of social deficits in the monogenic models. We demonstrate that the differences in responsiveness to the LPS treatment between the MIA and the monogenic models emerge from differences in the levels of cytokine production. LPS treatment in monogenic mutant mice did not induce amounts of interleukin-17a (IL-17a) comparable to those induced in MIA offspring  bypassing this difference by directly delivering IL-17a into S1DZ was sufficient to promote sociability in monogenic mutant mice as well as in MIA offspring. Conversely, abrogating the expression of IL-17 receptor subunit a (IL-17Ra) in the neurons of the S1DZ eliminated the ability of LPS to reverse the sociability phenotypes in MIA offspring. Our data support a neuroimmune mechanism that underlies neurodevelopmental disorders in which the production of IL-17a during inflammation can ameliorate the expression of social behaviour deficits by directly affecting neuronal activity in the central nervous system.


  
Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche 期刊论文
NATURE, 2020, 580 (7804) : 524-+
作者:  Poore, Gregory D.;  Kopylova, Evguenia;  Zhu, Qiyun;  Carpenter, Carolina;  Fraraccio, Serena;  Wandro, Stephen;  Kosciolek, Tomasz;  Janssen, Stefan;  Metcalf, Jessica;  Song, Se Jin;  Kanbar, Jad;  Miller-Montgomery, Sandrine;  Heaton, Robert;  Mckay, Rana;  Patel, Sandip Pravin;  Swafford, Austin D.;  Knight, Rob
收藏  |  浏览/下载:40/0  |  提交时间:2020/07/03

The initiation of an intestinal tumour is a probabilistic process that depends on the competition between mutant and normal epithelial stem cells in crypts(1). Intestinal stem cells are closely associated with a diverse but poorly characterized network of mesenchymal cell types(2,3). However, whether the physiological mesenchymal microenvironment of mutant stem cells affects tumour initiation remains unknown. Here we provide in vivo evidence that the mesenchymal niche controls tumour initiation in trans. By characterizing the heterogeneity of the intestinal mesenchyme using single-cell RNA-sequencing analysis, we identified a population of rare pericryptal Ptgs2-expressing fibroblasts that constitutively process arachidonic acid into highly labile prostaglandin E-2 (PGE(2)). Specific ablation of Ptgs2 in fibroblasts was sufficient to prevent tumour initiation in two different models of sporadic, autochthonous tumorigenesis. Mechanistically, single-cell RNA-sequencing analyses of a mesenchymal niche model showed that fibroblast-derived PGE(2) drives the expansion omicron f a population of Sca-1(+) reserve-like stem cells. These express a strong regenerative/tumorigenic program, driven by the Hippo pathway effector Yap. In vivo, Yap is indispensable for Sca-1(+) cell expansion and early tumour initiation and displays a nuclear localization in both mouse and human adenomas. Using organoid experiments, we identified a molecular mechanism whereby PGE(2) promotes Yap dephosphorylation, nuclear translocation and transcriptional activity by signalling through the receptor Ptger4. Epithelial-specific ablation of Ptger4 misdirected the regenerative reprogramming of stem cells and prevented Sca-1(+) cell expansion and sporadic tumour initiation in mutant mice, thereby demonstrating the robust paracrine control of tumour-initiating stem cells by PGE(2)-Ptger4. Analyses of patient-derived organoids established that PGE(2)-PTGER4 also regulates stem-cell function in humans. Our study demonstrates that initiation of colorectal cancer is orchestrated by the mesenchymal niche and reveals a mechanism by which rare pericryptal Ptgs2-expressing fibroblasts exert paracrine control over tumour-initiating stem cells via the druggable PGE(2)-Ptger4-Yap signalling axis.


Single-cell RNA-sequencing analysis of intestinal mesenchyme identified a population of fibroblasts that produce prostaglandin E-2, which, when disrupted, prevented initiation of intestinal tumours.


  
Olfactory receptor and circuit evolution promote host specialization 期刊论文
NATURE, 2020
作者:  Chen, Tse-An;  Chuu, Chih-Piao;  Tseng, Chien-Chih;  Wen, Chao-Kai;  Wong, H. -S. Philip;  Pan, Shuangyuan;  Li, Rongtan;  Chao, Tzu-Ang;  Chueh, Wei-Chen;  Zhang, Yanfeng;  Fu, Qiang;  Yakobson, Boris I.;  Chang, Wen-Hao;  Li, Lain-Jong
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

The evolution of animal behaviour is poorly understood(1,2). Despite numerous correlations between interspecific divergence in behaviour and nervous system structure and function, demonstrations of the genetic basis of these behavioural differences remain rare(3-5). Here we develop a neurogenetic model, Drosophila sechellia, a species that displays marked differences in behaviour compared to its close cousin Drosophila melanogaster(6,7), which are linked to its extreme specialization on noni fruit (Morinda citrifolia)(8-16). Using calcium imaging, we identify olfactory pathways in D. sechellia that detect volatiles emitted by the noni host. Our mutational analysis indicates roles for different olfactory receptors in long- and short-range attraction to noni, and our cross-species allele-transfer experiments demonstrate that the tuning of one of these receptors is important for species-specific host-seeking. We identify the molecular determinants of this functional change, and characterize their evolutionary origin and behavioural importance. We perform circuit tracing in the D. sechellia brain, and find that receptor adaptations are accompanied by increased sensory pooling onto interneurons as well as species-specific central projection patterns. This work reveals an accumulation of molecular, physiological and anatomical traits that are linked to behavioural divergence between species, and defines a model for investigating speciation and the evolution of the nervous system.


A neurogenetic model, Drosophila sechellia-a relative of Drosophila melanogaster that has developed an extreme specialization for a single host plant-sheds light on the evolution of interspecific differences in behaviour.


  
Virtual discovery of melatonin receptor ligands to modulate circadian rhythms 期刊论文
NATURE, 2020, 579 (7800) : 609-+
作者:  Huang, Weijiao;  Masureel, Matthieu;  Qu, Qianhui;  Janetzko, John;  Inoue, Asuka;  Kato, Hideaki E.;  Robertson, Michael J.;  Nguyen, Khanh C.;  Glenn, Jeffrey S.;  Skiniotis, Georgios;  Kobilka, Brian K.
收藏  |  浏览/下载:23/0  |  提交时间:2020/07/03

The neuromodulator melatonin synchronizes circadian rhythms and related physiological functions through the actions of two G-protein-coupled receptors: MT1 and MT2. Circadian release of melatonin at night from the pineal gland activates melatonin receptors in the suprachiasmatic nucleus of the hypothalamus, synchronizing the physiology and behaviour of animals to the light-dark cycle(1-4). The two receptors are established drug targets for aligning circadian phase to this cycle in disorders of sleep(5,6) and depression(1-4,7-9). Despite their importance, few in vivo active MT1-selective ligands have been reported(2,8,10-12), hampering both the understanding of circadian biology and the development of targeted therapeutics. Here we docked more than 150 million virtual molecules to an MT1 crystal structure, prioritizing structural fit and chemical novelty. Of these compounds, 38 high-ranking molecules were synthesized and tested, revealing ligands with potencies ranging from 470 picomolar to 6 micromolar. Structure-based optimization led to two selective MT1 inverse agonists-which were topologically unrelated to previously explored chemotypes-that acted as inverse agonists in a mouse model of circadian re-entrainment. Notably, we found that these MT1-selective inverse agonists advanced the phase of the mouse circadian clock by 1.3-1.5 h when given at subjective dusk, an agonist-like effect that was eliminated in MT1- but not in MT2-knockout mice. This study illustrates the opportunities for modulating melatonin receptor biology through MT1-selective ligands and for the discovery of previously undescribed, in vivo active chemotypes from structure-based screens of diverse, ultralarge libraries. A computational screen of an ultra-large virtual library against the structure of the melatonin receptor found nanomolar ligands, and ultimately two selective MT1 inverse agonists that induced phase advancement of the mouse circadian clock when given at subjective dusk.


  
LRP1 is a master regulator of tau uptake and spread 期刊论文
NATURE, 2020, 580 (7803) : 381-+
作者:  Han, Yan;  Reyes, Alexis A.;  Malik, Sara;  He, Yuan
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

The spread of protein aggregates during disease progression is a common theme underlying many neurodegenerative diseases. The microtubule-associated protein tau has a central role in the pathogenesis of several forms of dementia known as tauopathies-including Alzheimer'  s disease, frontotemporal dementia and chronic traumatic encephalopathy(1). Progression of these diseases is characterized by the sequential spread and deposition of protein aggregates in a predictable pattern that correlates with clinical severity(2). This observation and complementary experimental studies(3,4) have suggested that tau can spread in a prion-like manner, by passing to naive cells in which it templates misfolding and aggregation. However, although the propagation of tau has been extensively studied, the underlying cellular mechanisms remain poorly understood. Here we show that the low-density lipoprotein receptor-related protein 1 (LRP1) controls the endocytosis of tau and its subsequent spread. Knockdown of LRP1 significantly reduced tau uptake in H4 neuroglioma cells and in induced pluripotent stem cell-derived neurons. The interaction between tau and LRP1 is mediated by lysine residues in the microtubule-binding repeat region of tau. Furthermore, downregulation of LRP1 in an in vivo mouse model of tau spread was found to effectively reduce the propagation of tau between neurons. Our results identify LRP1 as a key regulator of tau spread in the brain, and therefore a potential target for the treatment of diseases that involve tau spread and aggregation.


  
gamma delta T cells and adipocyte IL-17RC control fat innervation and thermogenesis 期刊论文
NATURE, 2020, 578 (7796) : 610-+
作者:  Staus, Dean P.;  Hu, Hongli;  Robertson, Michael J.;  Kleinhenz, Alissa L. W.;  Wingler, Laura M.;  Capel, William D.;  Latorraca, Naomi R.;  Lefkowitz, Robert J.;  Skiniotis, Georgios
收藏  |  浏览/下载:54/0  |  提交时间:2020/07/03

V gamma 6(+) V delta 1(+) gamma delta T cells control tolerance to cold by activating adipocyte IL-17RC and promoting sympathetic innervation of thermogenic adipose tissue in mice.


The sympathetic nervous system innervates peripheral organs to regulate their function and maintain homeostasis, whereas target cells also produce neurotrophic factors to promote sympathetic innervation(1,2). The molecular basis of this bi-directional communication remains to be fully determined. Here we use thermogenic adipose tissue from mice as a model system to show that T cells, specifically gamma delta T cells, have a crucial role in promoting sympathetic innervation, at least in part by driving the expression of TGF beta 1 in parenchymal cells via the IL-17 receptor C (IL-17RC). Ablation of IL-17RC specifically in adipose tissue reduces expression of TGF beta 1 in adipocytes, impairs local sympathetic innervation and causes obesity and other metabolic phenotypes that are consistent with defective thermogenesis  innervation can be fully rescued by restoring TGF beta 1 expression. Ablating gamma delta tau cells and the IL-17RC signalling pathway also impairs sympathetic innervation in other tissues such as salivary glands. These findings demonstrate coordination between T cells and parenchymal cells to regulate sympathetic innervation.


  
CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities 期刊论文
NATURE, 2020
作者:  Yang, Jianfeng;  Faccenda, Manuele
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Cancer genomics studies have identified thousands of putative cancer driver genes(1). Development of high-throughput and accurate models to define the functions of these genes is a major challenge. Here we devised a scalable cancer-spheroid model and performed genome-wide CRISPR screens in 2D monolayers and 3D lung-cancer spheroids. CRISPR phenotypes in 3D more accurately recapitulated those of in vivo tumours, and genes with differential sensitivities between 2D and 3D conditions were highly enriched for genes that are mutated in lung cancers. These analyses also revealed drivers that are essential for cancer growth in 3D and in vivo, but not in 2D. Notably, we found that carboxypeptidase D is responsible for removal of a C-terminal RKRR motif(2) from the alpha-chain of the insulin-like growth factor 1 receptor that is critical for receptor activity. Carboxypeptidase D expression correlates with patient outcomes in patients with lung cancer, and loss of carboxypeptidase D reduced tumour growth. Our results reveal key differences between 2D and 3D cancer models, and establish a generalizable strategy for performing CRISPR screens in spheroids to reveal cancer vulnerabilities.


CRISPR screens in a 3D spheroid cancer model system more accurately recapitulate cancer phenotypes than existing 2D models and were used to identify carboxypeptidase D, acting via the IGF1R, as a 3D-specific driver of cancer growth.


  
Neuronal programming by microbiota regulates intestinal physiology 期刊论文
NATURE, 2020, 578 (7794) : 284-+
作者:  Li, Yilong;  Roberts, Nicola D.;  Wala, Jeremiah A.;  Shapira, Ofer;  Schumacher, Steven E.;  Kumar, Kiran;  Khurana, Ekta;  Waszak, Sebastian;  Korbel, Jan O.;  Haber, James E.;  Imielinski, Marcin;  Weischenfeldt, Joachim;  Beroukhim, Rameen;  Campbell, Peter J.;  Akdemir, Kadir C.;  Alvarez, Eva G.;  Baez-Ortega, Adrian;  Boutros, Paul C.;  Bowtell, David D. L.;  Brors, Benedikt;  Burns, Kathleen H.;  Chan, Kin;  Chen, Ken;  Cortes-Ciriano, Isidro;  Dueso-Barroso, Ana;  Dunford, Andrew J.;  Edwards, Paul A.;  Estivill, Xavier;  Etemadmoghadam, Dariush;  Feuerbach, Lars;  Fink, J. Lynn;  Frenkel-Morgenstern, Milana;  Garsed, Dale W.;  Gerstein, Mark;  Gordenin, Dmitry A.;  Haan, David;  Hess, Julian M.;  Hutter, Barbara;  Jones, David T. W.;  Ju, Young Seok;  Kazanov, Marat D.;  Klimczak, Leszek J.;  Koh, Youngil;  Lee, Eunjung Alice;  Lee, Jake June-Koo;  Lynch, Andy G.;  Macintyre, Geoff;  Markowetz, Florian;  Martincorena, Inigo;  Martinez-Fundichely, Alexander;  Meyerson, Matthew;  Miyano, Satoru;  Nakagawa, Hidewaki;  Navarro, Fabio C. P.;  Ossowski, Stephan;  Park, Peter J.;  Pearson, John, V;  Puiggros, Montserrat;  Rippe, Karsten;  Roberts, Steven A.;  Rodriguez-Martin, Bernardo;  Scully, Ralph;  Shackleton, Mark;  Sidiropoulos, Nikos;  Sieverling, Lina;  Stewart, Chip;  Torrents, David;  Tubio, Jose M. C.;  Villasante, Izar;  Waddell, Nicola;  Yang, Lixing;  Yao, Xiaotong;  Yoon, Sung-Soo;  Zamora, Jorge;  Zhang, Cheng-Zhong
收藏  |  浏览/下载:40/0  |  提交时间:2020/07/03

Neural control of the function of visceral organs is essential for homeostasis and health. Intestinal peristalsis is critical for digestive physiology and host defence, and is often dysregulated in gastrointestinal disorders(1). Luminal factors, such as diet and microbiota, regulate neurogenic programs of gut motility(2-5), but the underlying molecular mechanisms remain unclear. Here we show that the transcription factor aryl hydrocarbon receptor (AHR) functions as a biosensor in intestinal neural circuits, linking their functional output to the microbial environment of the gut lumen. Using nuclear RNA sequencing of mouse enteric neurons that represent distinct intestinal segments and microbiota states, we demonstrate that the intrinsic neural networks of the colon exhibit unique transcriptional profiles that are controlled by the combined effects of host genetic programs and microbial colonization. Microbiota-induced expression of AHR in neurons of the distal gastrointestinal tract enables these neurons to respond to the luminal environment and to induce expression of neuron-specific effector mechanisms. Neuron-specific deletion of Ahr, or constitutive overexpression of its negative feedback regulator CYP1A1, results in reduced peristaltic activity of the colon, similar to that observed in microbiota-depleted mice. Finally, expression of Ahr in the enteric neurons of mice treated with antibiotics partially restores intestinal motility. Together, our experiments identify AHR signalling in enteric neurons as a regulatory node that integrates the luminal environment with the physiological output of intestinal neural circuits to maintain gut homeostasis and health.


In a mouse model, aryl hydrocarbon receptor signalling in enteric neurons is revealed as a mechanism that helps to maintain gut homeostasis by integrating the luminal environment with the physiology of intestinal neural circuits.


  
Characterizing the regional contribution to PM10 pollution over northern France using two complementary approaches: Chemistry transport and trajectory-based receptor models 期刊论文
ATMOSPHERIC RESEARCH, 2019, 223: 1-14
作者:  Potier, E.;  Waked, A.;  Bourin, A.;  Minvielle, F.;  Pere, J. C.;  Perdrix, E.;  Michoud, V.;  Riffault, V.;  Alleman, L. Y.;  Sauvage, S.
收藏  |  浏览/下载:5/0  |  提交时间:2019/11/27
CHIMERE  Receptor model  PSCF  Concentration field  PM10 sources  
Source apportionment of volatile organic compounds measured near a cold heavy oil production area 期刊论文
ATMOSPHERIC RESEARCH, 2018, 206: 75-86
作者:  Aklilu, Yayne-abeba;  Cho, Sunny;  Zhang, Qianyu;  Taylor, Emily
收藏  |  浏览/下载:6/0  |  提交时间:2019/04/09
Volatile Organic Compounds (VOCs)  Receptor model  Cold heavy oil production  Positive Matrix Factorization analysis (PMF)  Source apportionment