GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

已选(0)清除 条数/页:   排序方式:
Structures of human pannexin 1 reveal ion pathways and mechanism of gating 期刊论文
NATURE, 2020
作者:  Krause, David W.;  Hoffmann, Simone;  Hu, Yaoming;  Wible, John R.;  Rougier, Guillermo W.;  Kirk, E. Christopher;  Groenke, Joseph R.;  Rogers, Raymond R.;  Rossie, James B.;  Schultz, Julia A.;  Evans, Alistair R.;  von Koenigswald, Wighart;  Rahantarisoa, Lydia J.
收藏  |  浏览/下载:32/0  |  提交时间:2020/07/03

Cryo-electron microscopy structures of the ATP-permeable channel pannexin 1 reveal a gating mechanism involving multiple distinct ion-conducting pathways.


Pannexin 1 (PANX1) is an ATP-permeable channel with critical roles in a variety of physiological functions such as blood pressure regulation(1), apoptotic cell clearance(2) and human oocyte development(3). Here we present several structures of human PANX1 in a heptameric assembly at resolutions of up to 2.8 angstrom, including an apo state, a caspase-7-cleaved state and a carbenoxolone-bound state. We reveal a gating mechanism that involves two ion-conducting pathways. Under normal cellular conditions, the intracellular entry of the wide main pore is physically plugged by the C-terminal tail. Small anions are conducted through narrow tunnels in the intracellular domain. These tunnels connect to the main pore and are gated by a long linker between the N-terminal helix and the first transmembrane helix. During apoptosis, the C-terminal tail is cleaved by caspase, allowing the release of ATP through the main pore. We identified a carbenoxolone-binding site embraced by W74 in the extracellular entrance and a role for carbenoxolone as a channel blocker. We identified a gap-junction-like structure using a glycosylation-deficient mutant, N255A. Our studies provide a solid foundation for understanding the molecular mechanisms underlying the channel gating and inhibition of PANX1 and related large-pore channels.


  
Premature mortality related to United States cross-state air pollution 期刊论文
NATURE, 2020, 578 (7794) : 261-+
作者:  Helmink, Beth A.;  Reddy, Sangeetha M.;  Gao, Jianjun;  Zhang, Shaojun;  Basar, Rafet;  Thakur, Rohit;  Yizhak, Keren;  Sade-Feldman, Moshe;  Blando, Jorge;  Han, Guangchun;  Gopalakrishnan, Vancheswaran;  Xi, Yuanxin;  Zhao, Hao;  Amaria, Rodabe N.;  Tawbi, Hussein A.;  Cogdill, Alex P.;  Liu, Wenbin;  LeBleu, Valerie S.;  Kugeratski, Fernanda G.;  Patel, Sapna;  Davies, Michael A.;  Hwu, Patrick;  Lee, Jeffrey E.;  Gershenwald, Jeffrey E.;  Lucci, Anthony;  Arora, Reetakshi;  Woodman, Scott;  Keung, Emily Z.;  Gaudreau, Pierre-Olivier;  Reuben, Alexandre;  Spencer, Christine N.;  Burton, Elizabeth M.;  Haydu, Lauren E.;  Lazar, Alexander J.;  Zapassodi, Roberta;  Hudgens, Courtney W.;  Ledesma, Deborah A.;  Ong, SuFey;  Bailey, Michael;  Warren, Sarah;  Rao, Disha;  Krijgsman, Oscar;  Rozeman, Elisa A.;  Peeper, Daniel;  Blank, Christian U.;  Schumacher, Ton N.;  Butterfield, Lisa H.;  Zelazowska, Monika A.;  McBride, Kevin M.;  Kalluri, Raghu;  Allison, James;  Petitprez, Florent;  Fridman, Wolf Herman;  Sautes-Fridman, Catherine;  Hacohen, Nir;  Rezvani, Katayoun;  Sharma, Padmanee;  Tetzlaff, Michael T.;  Wang, Linghua;  Wargo, Jennifer A.
收藏  |  浏览/下载:81/0  |  提交时间:2020/05/13

Outdoor air pollution adversely affects human health and is estimated to be responsible for five to ten per cent of the total annual premature mortality in the contiguous United States(1-3). Combustion emissions from a variety of sources, such as power generation or road traffic, make a large contribution to harmful air pollutants such as ozone and fine particulate matter (PM2.5)(4). Efforts to mitigate air pollution have focused mainly on the relationship between local emission sources and local air quality(2). Air quality can also be affected by distant emission sources, however, including emissions from neighbouring federal states(5,6). This cross-state exchange of pollution poses additional regulatory challenges. Here we quantify the exchange of air pollution among the contiguous United States, and assess its impact on premature mortality that is linked to increased human exposure to PM2.5 and ozone from seven emission sectors for 2005 to 2018. On average, we find that 41 to 53 per cent of air-quality-related premature mortality resulting from a state'  s emissions occurs outside that state. We also find variations in the cross-state contributions of different emission sectors and chemical species to premature mortality, and changes in these variations over time. Emissions from electric power generation have the greatest cross-state impacts as a fraction of their total impacts, whereas commercial/residential emissions have the smallest. However, reductions in emissions from electric power generation since 2005 have meant that, by 2018, cross-state premature mortality associated with the commercial/residential sector was twice that associated with power generation. In terms of the chemical species emitted, nitrogen oxides and sulfur dioxide emissions caused the most cross-state premature deaths in 2005, but by 2018 primary PM2.5 emissions led to cross-state premature deaths equal to three times those associated with sulfur dioxide emissions. These reported shifts in emission sectors and emission species that contribute to premature mortality may help to guide improvements to air quality in the contiguous United States.


  
Can the oil and gas sector enable geothermal technologies? Socio-technical opportunities and complementarity failures in Alberta, Canada 期刊论文
ENERGY POLICY, 2019, 125: 384-395
作者:  Leitch, Aletta;  Haley, Brendan;  Hastings-Simon, Sara
收藏  |  浏览/下载:32/0  |  提交时间:2019/04/09
Technological innovation system  Context  Related variety  Geothermal  Oil sands  Sustainability transitions