GSTDTAP

浏览/检索结果: 共20条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Spectroscopic confirmation of a mature galaxy cluster at a redshift of 2 期刊论文
NATURE, 2020, 577 (7788) : 39-+
作者:  Willis, J. P.;  Canning, R. E. A.;  Noordeh, E. S.;  Allen, S. W.;  King, A. L.;  Mantz, A.;  Morris, R. G.;  Stanford, S. A.;  Brammer, G.
收藏  |  浏览/下载:36/0  |  提交时间:2020/07/03

Galaxy clusters are the most massive virialized structures in the Universe and are formed through the gravitational accretion of matter over cosmic time(1). The discovery(2) of an evolved galaxy cluster at redshift z = 2, corresponding to a look-back time of 10.4 billion years, provides an opportunity to study its properties. The galaxy cluster XLSSC 122 was originally detected as a faint, extended X-ray source in the XMM Large Scale Structure survey and was revealed to be coincident with a compact over-density of galaxies(2) with photometric redshifts of 1.9 +/- 0.2. Subsequent observations3 at millimetre wavelengths detected a Sunyaev-Zel'  dovich decrement along the line of sight to XLSSC 122, thus confirming the existence of hot intracluster gas, while deep imaging spectroscopy from the European Space Agency'  s X-ray Multi-Mirror Mission (XMM-Newton) revealed(4) an extended, X-ray-bright gaseous atmosphere with a virial temperature of 60 million Kelvin, enriched with metals to the same extent as are local clusters. Here we report optical spectroscopic observations of XLSSC 122 and identify 37 member galaxies at a mean redshift of 1.98, corresponding to a look-back time of 10.4 billion years. We use photometry to determine a mean, dust-free stellar age of 2.98 billion years, indicating that star formation commenced in these galaxies at a mean redshift of 12, when the Universe was only 370 million years old. The full range of inferred formation redshifts, including the effects of dust, covers the interval from 7 to 13. These observations confirm that XLSSC 122 is a remarkably mature galaxy cluster with both evolved stellar populations in the member galaxies and a hot, metal-rich gas composing the intracluster medium.


  
Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals 期刊论文
NATURE, 2020
作者:  Grishin, Evgeni;  Malamud, Uri;  Perets, Hagai B.;  Wandel, Oliver;  Schaefer, Christoph M.
收藏  |  浏览/下载:33/0  |  提交时间:2020/07/03

The ongoing outbreak of coronavirus disease 2019 (COVID-19) has spread rapidly on a global scale. Although it is clear that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted through human respiratory droplets and direct contact, the potential for aerosol transmission is poorly understood(1-3). Here we investigated the aerodynamic nature of SARS-CoV-2 by measuring viral RNA in aerosols in different areas of two Wuhan hospitals during the outbreak of COVID-19 in February and March 2020. The concentration of SARS-CoV-2 RNA in aerosols that was detected in isolation wards and ventilated patient rooms was very low, but it was higher in the toilet areas used by the patients. Levels of airborne SARS-CoV-2 RNA in the most public areas was undetectable, except in two areas that were prone to crowding  this increase was possibly due to individuals infected with SARS-CoV-2 in the crowd. We found that some medical staff areas initially had high concentrations of viral RNA with aerosol size distributions that showed peaks in the submicrometre and/or supermicrometre regions  however, these levels were reduced to undetectable levels after implementation of rigorous sanitization procedures. Although we have not established the infectivity of the virus detected in these hospital areas, we propose that SARS-CoV-2 may have the potential to be transmitted through aerosols. Our results indicate that room ventilation, open space, sanitization of protective apparel, and proper use and disinfection of toilet areas can effectively limit the concentration of SARS-CoV-2 RNA in aerosols. Future work should explore the infectivity of aerosolized virus.


Aerodynamic analysis of SARS-CoV-2 RNA in two hospitals in Wuhan indicates that SARS-CoV-2 may have the potential to be transmitted through aerosols, although the infectivity of the virus RNA was not established in this study.


  
Feedback generates a second receptive field in neurons of the visual cortex 期刊论文
NATURE, 2020
作者:  Shi, Enzheng;  Yuan, Biao;  Shiring, Stephen B.;  Gao, Yao;  Akriti;  Guo, Yunfan;  Su, Cong;  Lai, Minliang;  Yang, Peidong;  Kong, Jing;  Savoie, Brett M.;  Yu, Yi;  Dou, Letian
收藏  |  浏览/下载:53/0  |  提交时间:2020/07/03

Animals sense the environment through pathways that link sensory organs to the brain. In the visual system, these feedforward pathways define the classical feedforward receptive field (ffRF), the area in space in which visual stimuli excite a neuron(1). The visual system also uses visual context-the visual scene surrounding a stimulus-to predict the content of the stimulus(2), and accordingly, neurons have been identified that are excited by stimuli outside their ffRF(3-8). However, the mechanisms that generate excitation to stimuli outside the ffRF are unclear. Here we show that feedback projections onto excitatory neurons in the mouse primary visual cortex generate a second receptive field that is driven by stimuli outside the ffRF. The stimulation of this feedback receptive field (fbRF) elicits responses that are slower and are delayed in comparison with those resulting from the stimulation of the ffRF. These responses are preferentially reduced by anaesthesia and by silencing higher visual areas. Feedback inputs from higher visual areas have scattered receptive fields relative to their putative targets in the primary visual cortex, which enables the generation of the fbRF. Neurons with fbRFs are located in cortical layers that receive strong feedback projections and are absent in the main input layer, which is consistent with a laminar processing hierarchy. The observation that large, uniform stimuli-which cover both the fbRF and the ffRF-suppress these responses indicates that the fbRF and the ffRF are mutually antagonistic. Whereas somatostatin-expressing inhibitory neurons are driven by these large stimuli, inhibitory neurons that express parvalbumin and vasoactive intestinal peptide have mutually antagonistic fbRF and ffRF, similar to excitatory neurons. Feedback projections may therefore enable neurons to use context to estimate information that is missing from the ffRF and to report differences in stimulus features across visual space, regardless of whether excitation occurs inside or outside the ffRF. By complementing the ffRF, the fbRF that we identify here could contribute to predictive processing.


Feedback projections onto neurons of the mouse primary visual cortex generate a second excitatory receptive field that is driven by stimuli outside of the classical feedforward receptive field, with responses mediated by higher visual areas.


  
Observation of topologically enabled unidirectional guided resonances 期刊论文
NATURE, 2020, 580 (7804) : 467-+
作者:  Wang, Renjing;  Wang, Shengliu;  Dhar, Ankita;  Peralta, Christopher;  Pavletich, Nikola P.
收藏  |  浏览/下载:20/0  |  提交时间:2020/07/03

Unidirectional radiation is important for various optoelectronic applications, such as lasers, grating couplers and optical antennas. However, almost all existing unidirectional emitters rely on the use of materials or structures that forbid outgoing waves-that is, mirrors, which are often bulky, lossy and difficult to fabricate. Here we theoretically propose and experimentally demonstrate a class of resonances in photonic crystal slabs that radiate only towards one side of the slab, with no mirror placed on the other side. These resonances, which we name '  unidirectional guided resonances'  , are found to be topological in nature: they emerge when a pair of half-integer topological charges(1-3) in the polarization field bounce into each other in momentum space. We experimentally demonstrate unidirectional guided resonances in the telecommunication regime by achieving single-side radiative quality factors as high as 1.6 x 10(5). We further demonstrate their topological nature through far-field polarimetry measurements. Our work represents a characteristic example of applying topological principles(4,5) to control optical fields and could lead to energy-efficient grating couplers and antennas for light detection and ranging.


Unidirectional radiation is achieved in a photonic crystal slab without the use of mirrors by merging a pair of topological defects carrying half-integer charges.


  
An open-source drug discovery platform enables ultra-large virtual screens 期刊论文
NATURE, 2020, 580 (7805) : 663-+
作者:  Peron, Simon;  Pancholi, Ravi;  Voelcker, Bettina;  Wittenbach, Jason D.;  olafsdottir, H. Freyja;  Freeman, Jeremy;  Svoboda, Karel
收藏  |  浏览/下载:50/0  |  提交时间:2020/07/03

VirtualFlow, an open-source drug discovery platform, enables the efficient preparation and virtual screening of ultra-large ligand libraries to identify molecules that bind with high affinity to target proteins.


On average, an approved drug currently costs US$2-3 billion and takes more than 10 years to develop(1). In part, this is due to expensive and time-consuming wet-laboratory experiments, poor initial hit compounds and the high attrition rates in the (pre-)clinical phases. Structure-based virtual screening has the potential to mitigate these problems. With structure-based virtual screening, the quality of the hits improves with the number of compounds screened(2). However, despite the fact that large databases of compounds exist, the ability to carry out large-scale structure-based virtual screening on computer clusters in an accessible, efficient and flexible manner has remained difficult. Here we describe VirtualFlow, a highly automated and versatile open-source platform with perfect scaling behaviour that is able to prepare and efficiently screen ultra-large libraries of compounds. VirtualFlow is able to use a variety of the most powerful docking programs. Using VirtualFlow, we prepared one of the largest and freely available ready-to-dock ligand libraries, with more than 1.4 billion commercially available molecules. To demonstrate the power of VirtualFlow, we screened more than 1 billion compounds and identified a set of structurally diverse molecules that bind to KEAP1 with submicromolar affinity. One of the lead inhibitors (iKeap1) engages KEAP1 with nanomolar affinity (dissociation constant (K-d) = 114 nM) and disrupts the interaction between KEAP1 and the transcription factor NRF2. This illustrates the potential of VirtualFlow to access vast regions of the chemical space and identify molecules that bind with high affinity to target proteins.


  
Collisional cooling of ultracold molecules 期刊论文
NATURE, 2020, 580 (7802) : 197-+
作者:  Wang, Qinyang;  Wang, Yupeng;  Ding, Jingjin;  Wang, Chunhong;  Zhou, Xuehan;  Gao, Wenqing;  Huang, Huanwei;  Shao, Feng;  Liu, Zhibo
收藏  |  浏览/下载:23/0  |  提交时间:2020/07/03

Since the original work on Bose-Einstein condensation(1,2), the use of quantum degenerate gases of atoms has enabled the quantum emulation of important systems in condensed matter and nuclear physics, as well as the study of many-body states that have no analogue in other fields of physics(3). Ultracold molecules in the micro- and nanokelvin regimes are expected to bring powerful capabilities to quantum emulation(4) and quantum computing(5), owing to their rich internal degrees of freedom compared to atoms, and to facilitate precision measurement and the study of quantum chemistry(6). Quantum gases of ultracold atoms can be created using collision-based cooling schemes such as evaporative cooling, but thermalization and collisional cooling have not yet been realized for ultracold molecules. Other techniques, such as the use of supersonic jets and cryogenic buffer gases, have reached temperatures limited to above 10 millikelvin(7,8). Here we show cooling of NaLi molecules to micro- and nanokelvin temperatures through collisions with ultracold Na atoms, with both molecules and atoms prepared in their stretched hyperfine spin states. We find a lower bound on the ratio of elastic to inelastic molecule-atom collisions that is greater than 50-large enough to support sustained collisional cooling. By employing two stages of evaporation, we increase the phase-space density of the molecules by a factor of 20, achieving temperatures as low as 220 nanokelvin. The favourable collisional properties of the Na-NaLi system could enable the creation of deeply quantum degenerate dipolar molecules and raises the possibility of using stretched spin states in the cooling of other molecules.


NaLi molecules are cooled to micro- and nanokelvin temperatures through collisions with ultracold Na atoms by using molecules and atoms in stretched hyperfine spin states and applying two evaporation stages.


  
Classification with a disordered dopantatom network in silicon 期刊论文
NATURE, 2020, 577 (7790) : 341-+
作者:  Vagnozzi, Ronald J.;  Maillet, Marjorie;  Sargent, Michelle A.;  Khalil, Hadi;  Johansen, Anne Katrine Z.;  Schwanekamp, Jennifer A.;  York, Allen J.;  Huang, Vincent;  Nahrendorf, Matthias;  Sadayappan, Sakthivel;  Molkentin, Jeffery D.
收藏  |  浏览/下载:30/0  |  提交时间:2020/07/03

Classification is an important task at which both biological and artificial neural networks excel(1,2). In machine learning, nonlinear projection into a high-dimensional feature space can make data linearly separable(3,4), simplifying the classification of complex features. Such nonlinear projections are computationally expensive in conventional computers. A promising approach is to exploit physical materials systems that perform this nonlinear projection intrinsically, because of their high computational density(5), inherent parallelism and energy efficiency(6,7). However, existing approaches either rely on the systems'  time dynamics, which requires sequential data processing and therefore hinders parallel computation(5,6,8), or employ large materials systems that are difficult to scale up(7). Here we use a parallel, nanoscale approach inspired by filters in the brain(1) and artificial neural networks(2) to perform nonlinear classification and feature extraction. We exploit the nonlinearity of hopping conduction(9-11) through an electrically tunable network of boron dopant atoms in silicon, reconfiguring the network through artificial evolution to realize different computational functions. We first solve the canonical two-input binary classification problem, realizing all Boolean logic gates(12) up to room temperature, demonstrating nonlinear classification with the nanomaterial system. We then evolve our dopant network to realize feature filters(2) that can perform four-input binary classification on the Modified National Institute of Standards and Technology handwritten digit database. Implementation of our material-based filters substantially improves the classification accuracy over that of a linear classifier directly applied to the original data(13). Our results establish a paradigm of silicon-based electronics for smallfootprint and energy-efficient computation(14).


  
Demonstration of cooling by the Muon Ionization Cooling Experiment 期刊论文
NATURE, 2020, 578 (7793) : 53-+
作者:  Zheng, Wen;  Zhao, Wenjing;  Wu, Meng;  Song, Xinyang;  Caro, Florence;  Sun, Ximei;  Gazzaniga, Francesca;  Stefanetti, Giuseppe;  Oh, Sungwhan;  Mekalanos, John J.;  Kasper, Dennis L.
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/03

The use of accelerated beams of electrons, protons or ions has furthered the development of nearly every scientific discipline. However, high-energy muon beams of equivalent quality have not yet been delivered. Muon beams can be created through the decay of pions produced by the interaction of a proton beam with a target. Such '  tertiary'  beams have much lower brightness than those created by accelerating electrons, protons or ions. High-brightness muon beams comparable to those produced by state-of-the-art electron, proton and ion accelerators could facilitate the study of lepton-antilepton collisions at extremely high energies and provide well characterized neutrino beams(1-6). Such muon beams could be realized using ionization cooling, which has been proposed to increase muon-beam brightness(7,8). Here we report the realization of ionization cooling, which was confirmed by the observation of an increased number of low-amplitude muons after passage of the muon beam through an absorber, as well as an increase in the corresponding phase-space density. The simulated performance of the ionization cooling system is consistent with the measured data, validating designs of the ionization cooling channel in which the cooling process is repeated to produce a substantial cooling effect(9-11). The results presented here are an important step towards achieving the muon-beam quality required to search for phenomena at energy scales beyond the reach of the Large Hadron Collider at a facility of equivalent or reduced wfootprint(6).


  
Thermal perceptions of the elderly, use patterns and satisfaction with open space 期刊论文
LANDSCAPE AND URBAN PLANNING, 2019, 185: 44-60
作者:  Yung, Esther Hiu Kwan;  Wang, Siqiang;  Chau, Chi-kwan
收藏  |  浏览/下载:16/0  |  提交时间:2019/11/26
Thermal perceptions  Elderly  Use patterns  Satisfaction  Open space  
"Let's go to the park." An investigation of older adults in Australia and their motivations for park visitation 期刊论文
LANDSCAPE AND URBAN PLANNING, 2018, 180: 234-246
作者:  Gibson, Stephen C.
收藏  |  浏览/下载:8/0  |  提交时间:2019/04/09
Park use  Park amenities  Universal design  Open space access  Older adult well-being