GSTDTAP

浏览/检索结果: 共98条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
欧盟委员会发布《健康与气候变化战略研究和创新议程》 快报文章
气候变化快报,2025年第12期
作者:  廖琴
Microsoft Word(18Kb)  |  收藏  |  浏览/下载:360/0  |  提交时间:2025/06/20
Climate Change  Health  Research and Innovation  
英国发布《气候适应研究与创新框架》 快报文章
气候变化快报,2025年第8期
作者:  廖琴
Microsoft Word(23Kb)  |  收藏  |  浏览/下载:438/0  |  提交时间:2025/04/20
Climate Adaptation  Research and Innovation  UK  
加拿大斥资1400万加元推进碳捕集与封存技术研发 快报文章
气候变化快报,2025年第4期
作者:  董利苹 杜海霞
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:449/0  |  提交时间:2025/02/20
Canada  Carbon Capture and Storage  Clean Energy  Innovation  
欧盟委员会探讨气候中和研究与创新领域的挑战并提出建议 快报文章
气候变化快报,2024年第6期
作者:  裴惠娟
Microsoft Word(22Kb)  |  收藏  |  浏览/下载:604/0  |  提交时间:2024/03/20
EU  Climate Neutrality  Research and Innovation  
美投资20亿美元开展二氧化碳运输基础设施建设 快报文章
地球科学快报,2022年第20期
作者:  刘文浩
Microsoft Word(22Kb)  |  收藏  |  浏览/下载:637/0  |  提交时间:2022/10/24
DOE  Carbon Dioxide Transportation Infrastructure Finance and Innovation  
UKRI推出卓越的研究和创新计划 快报文章
资源环境快报,2022年第16期
作者:  魏艳红
Microsoft Word(22Kb)  |  收藏  |  浏览/下载:696/0  |  提交时间:2022/08/31
UKRI  Research and Innovation  Talent and Technologies  
英国制定净零研究与创新框架 快报文章
气候变化快报,2021年第21期
作者:  刘燕飞
Microsoft Word(24Kb)  |  收藏  |  浏览/下载:842/0  |  提交时间:2021/11/08
Net Zero  Research and Innovation  
英国UKRI新投资加强科研基础设施建设 快报文章
地球科学快报,2021年第13期
作者:  刘文浩
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:504/0  |  提交时间:2021/07/08
UKRI  infrastructure  Research and Innovation  
Multispecific drugs herald a new era of biopharmaceutical innovation 期刊论文
NATURE, 2020, 580 (7803) : 329-338
作者:  Gallego, Laura D.;  Schneider, Maren;  Mittal, Chitvan;  Romanauska, Anete;  Carrillo, Ricardo M. Gudino;  Schubert, Tobias;  Pugh, B. Franklin;  Koehler, Alwin
收藏  |  浏览/下载:39/0  |  提交时间:2020/07/03

The modern biopharmaceutical industry traces its roots to the dawn of the twentieth century, coincident with marketing of aspirin-a signature event in the history of modern drug development. Although the archetypal discovery process did not change markedly in the first seven decades of the industry, the past fifty years have seen two successive waves of transformative innovation in the development of drug molecules: the rise of '  rational drug discovery'  methodology in the 1970s, followed by the invention of recombinant protein-based therapeutic agents in the 1980s. An incipient fourth wave is the advent of multispecific drugs. The successful development of prospectively designed multispecific drugs has the potential to reconfigure our ideas of how target-based therapeutic molecules can work, and what it is possible to achieve with them. Here I review the two major classes of multispecific drugs: those that enrich a therapeutic agent at a particular site of action and those that link a therapeutic target to a biological effector. The latter class-being freed from the constraint of having to directly modulate the target upon binding-may enable access to components of the proteome that currently cannot be targeted by drugs.


  
Video-based AI for beat-to-beat assessment of cardiac function 期刊论文
NATURE, 2020, 580 (7802) : 252-+
作者:  Pleguezuelos-Manzano, Cayetano;  Puschhof, Jens;  Huber, Axel Rosendahl;  van Hoeck, Arne;  Wood, Henry M.;  Nomburg, Jason;  Gurjao, Carino;  Manders, Freek;  Dalmasso, Guillaume;  Stege, Paul B.;  Paganelli, Fernanda L.;  Geurts, Maarten H.;  Beumer, Joep;  Mizutani, Tomohiro;  Miao, Yi;  van der Linden, Reinier;  van der Elst, Stefan;  Garcia, K. Christopher;  Top, Janetta;  Willems, Rob J. L.;  Giannakis, Marios;  Bonnet, Richard;  Quirke, Phil;  Meyerson, Matthew;  Cuppen, Edwin;  van Boxtel, Ruben;  Clevers, Hans
收藏  |  浏览/下载:136/0  |  提交时间:2020/07/03

A video-based deep learning algorithm-EchoNet-Dynamic-accurately identifies subtle changes in ejection fraction and classifies heart failure with reduced ejection fraction using information from multiple cardiac cycles.


Accurate assessment of cardiac function is crucial for the diagnosis of cardiovascular disease(1), screening for cardiotoxicity(2) and decisions regarding the clinical management of patients with a critical illness(3). However, human assessment of cardiac function focuses on a limited sampling of cardiac cycles and has considerable inter-observer variability despite years of training(4,5). Here, to overcome this challenge, we present a video-based deep learning algorithm-EchoNet-Dynamic-that surpasses the performance of human experts in the critical tasks of segmenting the left ventricle, estimating ejection fraction and assessing cardiomyopathy. Trained on echocardiogram videos, our model accurately segments the left ventricle with a Dice similarity coefficient of 0.92, predicts ejection fraction with a mean absolute error of 4.1% and reliably classifies heart failure with reduced ejection fraction (area under the curve of 0.97). In an external dataset from another healthcare system, EchoNet-Dynamic predicts the ejection fraction with a mean absolute error of 6.0% and classifies heart failure with reduced ejection fraction with an area under the curve of 0.96. Prospective evaluation with repeated human measurements confirms that the model has variance that is comparable to or less than that of human experts. By leveraging information across multiple cardiac cycles, our model can rapidly identify subtle changes in ejection fraction, is more reproducible than human evaluation and lays the foundation for precise diagnosis of cardiovascular disease in real time. As a resource to promote further innovation, we also make publicly available a large dataset of 10,030 annotated echocardiogram videos.