GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

已选(0)清除 条数/页:   排序方式:
Highly porous nature of a primitive asteroid revealed by thermal imaging 期刊论文
NATURE, 2020, 579 (7800) : 518-522
作者:  Quinn, Robert A.;  Melnik, Alexey, V;  Vrbanac, Alison;  Fu, Ting;  Patras, Kathryn A.;  Christy, Mitchell P.;  Bodai, Zsolt;  Belda-Ferre, Pedro;  Tripathi, Anupriya;  Chung, Lawton K.;  Downes, Michael;  Welch, Ryan D.;  Quinn, Melissa;  Humphrey, Greg;  Panitchpakdi, Morgan;  Weldon, Kelly C.;  Aksenov, Alexander;  da Silva, Ricardo;  Avila-Pacheco, Julian;  Clish, Clary;  Bae, Sena;  Mallick, Himel;  Franzosa, Eric A.;  Lloyd-Price, Jason;  Bussell, Robert;  Thron, Taren;  Nelson, Andrew T.;  Wang, Mingxun;  Leszczynski, Eric;  Vargas, Fernando;  Gauglitz, Julia M.;  Meehan, Michael J.;  Gentry, Emily;  Arthur, Timothy D.;  Komor, Alexis C.;  Poulsen, Orit;  Boland, Brigid S.;  Chang, John T.;  Sandborn, William J.;  Lim, Meerana;  Garg, Neha;  Lumeng, Julie C.;  Xavier, Ramnik J.;  Kazmierczak, Barbara, I;  Jain, Ruchi;  Egan, Marie;  Rhee, Kyung E.;  Ferguson, David;  Raffatellu, Manuela;  Vlamakis, Hera;  Haddad, Gabriel G.;  Siegel, Dionicio;  Huttenhower, Curtis;  Mazmanian, Sarkis K.;  Evans, Ronald M.;  Nizet, Victor;  Knight, Rob;  Dorrestein, Pieter C.
收藏  |  浏览/下载:102/0  |  提交时间:2020/05/13

Carbonaceous (C-type) asteroids(1) are relics of the early Solar System that have preserved primitive materials since their formation approximately 4.6 billion years ago. They are probably analogues of carbonaceous chondrites(2,3) and are essential for understanding planetary formation processes. However, their physical properties remain poorly known because carbonaceous chondrite meteoroids tend not to survive entry to Earth'  s atmosphere. Here we report on global one-rotation thermographic images of the C-type asteroid 162173 Ryugu, taken by the thermal infrared imager (TIR)(4) onboard the spacecraft Hayabusa2(5), indicating that the asteroid'  s boulders and their surroundings have similar temperatures, with a derived thermal inertia of about 300 J m(-2) s(-0.5) K-1 (300 tiu). Contrary to predictions that the surface consists of regolith and dense boulders, this low thermal inertia suggests that the boulders are more porous than typical carbonaceous chondrites(6) and that their surroundings are covered with porous fragments more than 10 centimetres in diameter. Close-up thermal images confirm the presence of such porous fragments and the flat diurnal temperature profiles suggest a strong surface roughness effect(7,8). We also observed in the close-up thermal images boulders that are colder during the day, with thermal inertia exceeding 600 tiu, corresponding to dense boulders similar to typical carbonaceous chondrites(6). These results constrain the formation history of Ryugu: the asteroid must be a rubble pile formed from impact fragments of a parent body with microporosity(9) of approximately 30 to 50 per cent that experienced a low degree of consolidation. The dense boulders might have originated from the consolidated innermost region or they may have an exogenic origin. This high-porosity asteroid may link cosmic fluffy dust to dense celestial bodies(10).


Thermal imaging data obtained from the spacecraft Hayabusa2 reveal that the carbonaceous asteroid 162173 Ryugu is an object of unusually high porosity.


  
Ruthenium isotope vestige of Earth's pre-late-veneer mantle preserved in Archaean rocks 期刊论文
NATURE, 2020, 579 (7798) : 240-+
作者:  Abadie, Valerie;  Kim, Sangman M.;  Lejeune, Thomas;  Palanski, Brad A.;  Ernest, Jordan D.;  Tastet, Olivier;  Voisine, Jordan;  Discepolo, Valentina;  Marietta, Eric, V;  Hawash, Mohamed B. F.;  Ciszewski, Cezary;  Bouziat, Romain;  Panigrahi, Kaushik;  Horwath, Irina;  Zurenski, Matthew A.;  Lawrence, Ian;  Dumaine, Anne;  Yotova, Vania;  Grenier, Jean-Christophe;  Murray, Joseph A.;  Khosla, Chaitan;  Barreiro, Luis B.;  Jabri, Bana
收藏  |  浏览/下载:45/0  |  提交时间:2020/05/13

The accretion of volatile-rich material from the outer Solar System represents a crucial prerequisite for Earth to develop oceans and become a habitable planet(1-4). However, the timing of this accretion remains controversial(5-8). It has been proposed that volatile elements were added to Earth by the late accretion of a late veneer consisting of carbonaceous-chondrite-like material after core formation had ceased(6,9,10). This view could not be reconciled with the ruthenium (Ru) isotope composition of carbonaceous chondrites(5,11), which is distinct from that of the modern mantle(12), or of any known meteorite group(5). As a possible solution, Earth'  s pre-late-veneer mantle could already have contained a fraction of Ru that was not fully extracted by core formation(13). The presence of such pre-late-veneer Ru can only be established if its isotope composition is distinct from that of the modern mantle. Here we report the first high-precision, mass-independent Ru isotope compositions for Eoarchaean ultramafic rocks from southwest Greenland, which display a relative Ru-100 excess of 22 parts per million compared with the modern mantle value. This Ru-100 excess indicates that the source of the Eoarchaean rocks already contained a substantial fraction of Ru before the accretion of the late veneer. By 3.7 billion years ago, the mantle beneath southwest Greenland had not yet fully equilibrated with late accreted material. Otherwise, no Ru isotopic difference relative to the modern mantle would be observed. If constraints from other highly siderophile elements besides Ru are also considered(14), the composition of the modern mantle can only be reconciled if the late veneer contained substantial amounts of carbonaceous-chondrite-like materials with their characteristic Ru-100 deficits. These data therefore relax previous constraints on the late veneer and are consistent with volatile-rich material from the outer Solar System being delivered to Earth during late accretion.


  
Insights into the origin of carbonaceous chondrite organics from their triple oxygen isotope composition 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (34) : 8535-8540
作者:  Tartese, Romain;  Chaussidon, Marc;  Gurenko, Andrey;  Delarue, Frederic;  Robert, Francois
收藏  |  浏览/下载:14/0  |  提交时间:2019/11/27
carbonaceous chondrites  organic matter  oxygen isotopes  protosolar nebula  secondary ion mass spectrometry