GSTDTAP

浏览/检索结果: 共6条,第1-6条 帮助

已选(0)清除 条数/页:   排序方式:
Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform 期刊论文
NATURE, 2020
作者:  Touat, Mehdi;  Li, Yvonne Y.;  Boynton, Adam N.;  Spurr, Liam F.;  Iorgulescu, J. Bryan;  Bohrson, Craig L.;  Cortes-Ciriano, Isidro;  Birzu, Cristina;  Geduldig, Jack E.;  Pelton, Kristine;  Lim-Fat, Mary Jane;  Pal, Sangita;  Ferrer-Luna, Ruben;  Ramkissoon, Shakti H.;  Dubois, Frank;  Bellamy, Charlotte;  Currimjee, Naomi;  Bonardi, Juliana;  Qian Kenin;  Ho, Patricia;  Malinowski, Seth;  Taquet, Leon;  Jones, Robert E.;  Shetty, Aniket;  Chow, Kin-Hoe;  Sharaf, Radwa;  Pavlick, Dean;  Albacker, Lee A.;  Younan, Nadia;  Baldini, Capucine;  Verreault, Maite;  Giry, Marine;  Guillerm, Erell;  Ammari, Samy;  Beuvon, Frederic;  Mokhtari, Karima;  Alentorn, Agusti;  Dehais, Caroline;  Houillier, Caroline;  Laigle-Donadey, Florence;  Psimaras, Dimitri;  Lee, Eudocia Q.;  Nayak, Lakshmi;  McFaline-Figueroa, J. Ricardo;  Carpentier, Alexandre;  Cornu, Philippe;  Capelle, Laurent;  Mathon, Bertrand;  Barnholtz-Sloan, Jill S.;  Chakravarti, Arnab;  Bi, Wenya Linda;  Chiocca, E. Antonio;  Fehnel, Katie Pricola;  Alexandrescu, Sanda;  Chi, Susan N.;  Haas-Kogan, Daphne;  Batchelor, Tracy T.;  Frampton, Garrett M.;  Alexander, Brian M.;  Huang, Raymond Y.;  Ligon, Azra H.;  Coulet, Florence;  Delattre, Jean-Yves;  Hoang-Xuan, Khe;  Meredith, David M.;  Santagata, Sandro;  Duval, Alex;  Sanson, Marc;  Cherniack, Andrew D.;  Wen, Patrick Y.;  Reardon, David A.;  Marabelle, Aurelien;  Park, Peter J.;  Idbaih, Ahmed;  Beroukhim, Rameen;  Bandopadhayay, Pratiti;  Bielle, Franck;  Ligon, Keith L.
收藏  |  浏览/下载:40/0  |  提交时间:2020/07/03

Reverse genetics has been an indispensable tool to gain insights into viral pathogenesis and vaccine development. The genomes of large RNA viruses, such as those from coronaviruses, are cumbersome to clone and manipulate inEscherichia coliowing to the size and occasional instability of the genome(1-3). Therefore, an alternative rapid and robust reverse-genetics platform for RNA viruses would benefit the research community. Here we show the full functionality of a yeast-based synthetic genomics platform to genetically reconstruct diverse RNA viruses, including members of theCoronaviridae,FlaviviridaeandPneumoviridaefamilies. Viral subgenomic fragments were generated using viral isolates, cloned viral DNA, clinical samples or synthetic DNA, and these fragments were then reassembled in one step inSaccharomyces cerevisiaeusing transformation-associated recombination cloning to maintain the genome as a yeast artificial chromosome. T7 RNA polymerase was then used to generate infectious RNA to rescue viable virus. Using this platform, we were able to engineer and generate chemically synthesized clones of the virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)(4), which has caused the recent pandemic of coronavirus disease (COVID-19), in only a week after receipt of the synthetic DNA fragments. The technical advance that we describe here facilitates rapid responses to emerging viruses as it enables the real-time generation and functional characterization of evolving RNA virus variants during an outbreak.


A yeast-based synthetic genomics platform is used to reconstruct and characterize large RNA viruses from synthetic DNA fragments  this technique will facilitate the rapid analysis of RNA viruses, such as SARS-CoV-2, during an outbreak.


  
A mechanism of ferritin crystallization revealed by cryo-STEM tomography 期刊论文
NATURE, 2020, 579 (7800) : 540-+
作者:  van Gastel, Nick;  Stegen, Steve;  Eelen, Guy;  Schoors, Sandra;  Carlier, Aurelie;  Daniels, Veerle W.;  Baryawno, Ninib;  Przybylski, Dariusz;  Depypere, Maarten;  Stiers, Pieter-Jan;  Lambrechts, Dennis;  Van Looveren, Riet;  Torrekens, Sophie
收藏  |  浏览/下载:33/0  |  提交时间:2020/07/03

Protein crystallization is important in structural biology, disease research and pharmaceuticals. It has recently been recognized that nonclassical crystallization involving initial formation of an amorphous precursor phase-occurs often in protein, organic and inorganic crystallization processes(1-5). A two-step nucleation theory has thus been proposed, in which initial low-density, solvated amorphous aggregates subsequently densify, leading to nucleation(4,6,7). This view differs from classical nucleation theory, which implies that crystalline nuclei forming in solution have the same density and structure as does the final crystalline state(1). A protein crystallization mechanism involving this classical pathway has recently been observed directly(8). However, a molecular mechanism of nonclassical protein crystallization(9-15) has not been established(9,11,14). To determine the nature of the amorphous precursors and whether crystallization takes place within them (and if so, how order develops at the molecular level), three-dimensional (3D) molecular-level imaging of a crystallization process is required. Here we report cryogenic scanning transmission microscopy tomography of ferritin aggregates at various stages of crystallization, followed by 3D reconstruction using simultaneous iterative reconstruction techniques to provide a 3D picture of crystallization with molecular resolution. As crystalline order gradually increased in the studied aggregates, they exhibited an increase in both order and density from their surface towards their interior. We observed no highly ordered small structures typical of a classical nucleation process, and occasionally we observed several ordered domains emerging within one amorphous aggregate, a phenomenon not predicted by either classical or two-step nucleation theories. Our molecular-level analysis hints at desolvation as the driver of the continuous order-evolution mechanism, a view that goes beyond current nucleation models, yet is consistent with a broad spectrum of protein crystallization mechanisms.


  
Pathway paradigms revealed from the genetics of inflammatory bowel disease 期刊论文
NATURE, 2020, 578 (7796) : 527-539
作者:  Yu, Kwanha;  Lin, Chia-Ching John;  Hatcher, Asante;  Lozzi, Brittney;  Kong, Kathleen;  Huang-Hobbs, Emmet;  Cheng, Yi-Ting;  Beechar, Vivek B.;  Zhu, Wenyi;  Zhang, Yiqun;  Chen, Fengju;  Mills, Gordon B.;  Mohila, Carrie A.;  Creighton, Chad J.;  Noebels, Jeffrey L.;  Scott, Kenneth L.;  Deneen, Benjamin
收藏  |  浏览/下载:21/0  |  提交时间:2020/07/03

Inflammatory bowel disease (IBD) is a complex genetic disease that is instigated and amplified by the confluence of multiple genetic and environmental variables that perturb the immune-microbiome axis. The challenge of dissecting pathological mechanisms underlying IBD has led to the development of transformative approaches in human genetics and functional genomics. Here we describe IBD as a model disease in the context of leveraging human genetics to dissect interactions in cellular and molecular pathways that regulate homeostasis of the mucosal immune system. Finally, we synthesize emerging insights from multiple experimental approaches into pathway paradigms and discuss future prospects for disease-subtype classification and therapeutic intervention.


This Review examines inflammatory bowel disease in the context of human genetics studies that help to identify pathways that regulate homeostasis of the mucosal immune system and discusses future prospects for disease-subtype classification and therapeutic intervention.


  
A new coronavirus associated with human respiratory disease in China 期刊论文
NATURE, 2020, 579 (7798) : 265-+
作者:  Rollie, Clare;  Chevallereau, Anne;  Watson, Bridget N. J.;  Chyou, Te-yuan;  Fradet, Olivier;  McLeod, Isobel;  Fineran, Peter C.;  Brown, Chris M.;  Gandon, Sylvain;  Westra, Edze R.
收藏  |  浏览/下载:85/0  |  提交时间:2020/07/03

Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a major threat to public health(1-3). Despite intense research efforts, how, when and where new diseases appear are still a source of considerable uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei province, China. As of 25 January 2020, at least 1,975 cases had been reported since the first patient was hospitalized on 12 December 2019. Epidemiological investigations have suggested that the outbreak was associated with a seafood market in Wuhan. Here we study a single patient who was a worker at the market and who was admitted to the Central Hospital of Wuhan on 26 December 2019 while experiencing a severe respiratory syndrome that included fever, dizziness and a cough. Metagenomic RNA sequencing(4) of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family Coronaviridae, which is designated here '  WH-Human 1'  coronavirus (and has also been referred to as '  2019-nCoV'  ). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) that had previously been found in bats in China(5). This outbreak highlights the ongoing ability of viral spill-over from animals to cause severe disease in humans.


  
Precision wildlife medicine: applications of the human-centred precision medicine revolution to species conservation 期刊论文
GLOBAL CHANGE BIOLOGY, 2017, 23 (5)
作者:  Whilde, Jenny;  Martindale, Mark Q.;  Duffy, David J.
收藏  |  浏览/下载:14/0  |  提交时间:2019/04/09
chytridiomycosis  EcoHealth  emerging disease  environmental DNA (eDNA)  epizootic disease  fibropapillomatosis  One Health  systems medicine  wildlife cancer  wildlife disease  
Emergence of white pine needle damage in the northeastern United States is associated with changes in pathogen pressure in response to climate change 期刊论文
GLOBAL CHANGE BIOLOGY, 2017, 23 (1)
作者:  Wyka, Stephen A.;  Smith, Cheryl;  Munck, Isabel A.;  Rock, Barrett N.;  Ziniti, Beth L.;  Broders, Kirk
收藏  |  浏览/下载:21/0  |  提交时间:2019/04/09
climatic modeling  disease complex  emerging pathogens  Lecanosticta acicola  pathogens and climate change  plant pathogen epidemiology  precipitation  Septorioides strobus