GSTDTAP

浏览/检索结果: 共23条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Coupling delay controls synchronized oscillation in the segmentation clock 期刊论文
NATURE, 2020
作者:  Yoshioka-Kobayashi, Kumiko;  Matsumiya, Marina;  Niino, Yusuke;  Isomura, Akihiro;  Kori, Hiroshi;  Miyawaki, Atsushi;  Kageyama, Ryoichiro
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

Individual cellular activities fluctuate but are constantly coordinated at the population level via cell-cell coupling. A notable example is the somite segmentation clock, in which the expression of clock genes (such as Hes7) oscillates in synchrony between the cells that comprise the presomitic mesoderm (PSM)(1,2). This synchronization depends on the Notch signalling pathway  inhibiting this pathway desynchronizes oscillations, leading to somite fusion(3-7). However, how Notch signalling regulates the synchronicity of HES7 oscillations is unknown. Here we establish a live-imaging system using a new fluorescent reporter (Achilles), which we fuse with HES7 to monitor synchronous oscillations in HES7 expression in the mouse PSM at a single-cell resolution. Wild-type cells can rapidly correct for phase fluctuations in HES7 oscillations, whereas the absence of the Notch modulator gene lunatic fringe (Lfng) leads to a loss of synchrony between PSM cells. Furthermore, HES7 oscillations are severely dampened in individual cells of Lfng-null PSM. However, when Lfng-null PSM cells were completely dissociated, the amplitude and periodicity of HES7 oscillations were almost normal, which suggests that LFNG is involved mostly in cell-cell coupling. Mixed cultures of control and Lfng-null PSM cells, and an optogenetic Notch signalling reporter assay, revealed that LFNG delays the signal-sending process of intercellular Notch signalling transmission. These results-together with mathematical modelling-raised the possibility that Lfng-null PSM cells shorten the coupling delay, thereby approaching a condition known as the oscillation or amplitude death of coupled oscillators(8). Indeed, a small compound that lengthens the coupling delay partially rescues the amplitude and synchrony of HES7 oscillations in Lfng-null PSM cells. Our study reveals a delay control mechanism of the oscillatory networks involved in somite segmentation, and indicates that intercellular coupling with the correct delay is essential for synchronized oscillation.


Monitoring cells of the mouse presomitic mesoderm using the Achilles reporter fused to HES7 sheds light on the mechanisms that underpin synchronous oscillations in the expression of clock genes between neighbouring cells.


  
Impaired cell fate through gain-of-function mutations in a chromatin reader 期刊论文
NATURE, 2020, 577 (7788) : 121-+
作者:  Wan, Liling;  Chong, Shasha;  Xuan, Fan;  Liang, Angela;  Cui, Xiaodong;  Gates, Leah;  Carroll, Thomas S.;  Li, Yuanyuan;  Feng, Lijuan;  Chen, Guochao;  Wang, Shu-Ping;  Ortiz, Michael V.;  Daley, Sara K.;  Wang, Xiaolu;  Xuan, Hongwen;  Kentsis, Alex;  Muir, Tom W.;  Roeder, Robert G.;  Li, Haitao;  Li, Wei;  Tjian, Robert;  Wen, Hong;  Allis, C. David
收藏  |  浏览/下载:25/0  |  提交时间:2020/07/03

Modifications of histone proteins have essential roles in normal development and human disease. Recognition of modified histones by '  reader'  proteins is a key mechanism that mediates the function of histone modifications, but how the dysregulation of these readers might contribute to disease remains poorly understood. We previously identified the ENL protein as a reader of histone acetylation via its YEATS domain, linking it to the expression of cancer-driving genes in acute leukaemia1. Recurrent hotspot mutations have been found in the ENL YEATS domain in Wilms tumour2,3, the most common type of paediatric kidney cancer. Here we show, using human and mouse cells, that these mutations impair cell-fate regulation by conferring gain-of-function in chromatin recruitment and transcriptional control. ENL mutants induce gene-expression changes that favour a premalignant cell fate, and, in an assay for nephrogenesis using murine cells, result in undifferentiated structures resembling those observed in human Wilms tumour. Mechanistically, although bound to largely similar genomic loci as the wild-type protein, ENL mutants exhibit increased occupancy at a subset of targets, leading to a marked increase in the recruitment and activity of transcription elongation machinery that enforces active transcription from target loci. Furthermore, ectopically expressed ENL mutants exhibit greater self-association and form discrete and dynamic nuclear puncta that are characteristic of biomolecular hubs consisting of local high concentrations of regulatory factors. Such mutation-driven ENL self-association is functionally linked to enhanced chromatin occupancy and gene activation. Collectively, our findings show that hotspot mutations in a chromatinreader domain drive self-reinforced recruitment, derailing normal cell-fate control during development and leading to an oncogenic outcome.


  
A distal enhancer at risk locus 11q13.5 promotes suppression of colitis by T-reg cells 期刊论文
NATURE, 2020
作者:  Ma, Xiyu;  Claus, Lucas A. N.;  Leslie, Michelle E.;  Tao, Kai;  Wu, Zhiping;  Liu, Jun;  Yu, Xiao;  Li, Bo;  Zhou, Jinggeng;  Savatin, Daniel V.;  Peng, Junmin;  Tyler, Brett M.;  Heese, Antje;  Russinova, Eugenia;  He, Ping;  Shan, Libo
收藏  |  浏览/下载:65/0  |  提交时间:2020/07/03

Genetic variations underlying susceptibility to complex autoimmune and allergic diseases are concentrated within noncoding regulatory elements termed enhancers(1). The functions of a large majority of disease-associated enhancers are unknown, in part owing to their distance from the genes they regulate, a lack of understanding of the cell types in which they operate, and our inability to recapitulate the biology of immune diseases in vitro. Here, using shared synteny to guide loss-of-function analysis of homologues of human enhancers in mice, we show that the prominent autoimmune and allergic disease risk locus at chromosome 11q13.5(2-7) contains a distal enhancer that is functional in CD4(+) regulatory T (T-reg) cells and required for T-reg-mediated suppression of colitis. The enhancer recruits the transcription factors STAT5 and NF-kappa B to mediate signal-driven expression of Lrrc32, which encodes the protein glycoprotein A repetitions predominant (GARP). Whereas disruption of the Lrrc32 gene results in early lethality, mice lacking the enhancer are viable but lack GARP expression in Foxp3(+) T-reg cells, which are unable to control colitis in a cell-transfer model of the disease. In human T-reg cells, the enhancer forms conformational interactions with the promoter of LRRC32 and enhancer risk variants are associated with reduced histone acetylation and GARP expression. Finally, functional fine-mapping of 11q13.5 using CRISPR-activation (CRISPRa) identifies a CRISPRa-responsive element in the vicinity of risk variant rs11236797 capable of driving GARP expression. These findings provide a mechanistic basis for association of the 11q13.5 risk locus with immune-mediated diseases and identify GARP as a potential target in their therapy.


Shared synteny guides loss-of-function analysis of human enhancer homologues in mice, identifying a distal enhancer at the autoimmune and allergic disease risk locus at chromosome 11q13.5 whose function in regulatory T cells provides a mechanistic basis for its role in disease.


  
poly(UG)-tailed RNAs in genome protection and epigenetic inheritance 期刊论文
NATURE, 2020, 582 (7811) : 283-+
作者:  Raj, Dipak K.;  Das Mohapatra, Alok;  Jnawali, Anup;  Zuromski, Jenna;  Jha, Ambrish;  Cham-Kpu, Gerald;  Sherman, Brett;  Rudlaff, Rachel M.;  Nixon, Christina E.;  Hilton, Nicholas;  Oleinikov, Andrew V.;  Chesnokov, Olga;  Merritt, Jordan;  Pond-Tor, Sunthorn
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/03

Mobile genetic elements threaten genome integrity in all organisms. RDE-3 (also known as MUT-2) is a ribonucleotidyltransferase that is required for transposon silencing and RNA interference in Caenorhabditis elegans(1-4). When tethered to RNAs in heterologous expression systems, RDE-3 can add long stretches of alternating non-templated uridine (U) and guanosine (G) ribonucleotides to the 3 '  termini of these RNAs (designated poly(UG) or pUG tails)(5). Here we show that, in its natural context in C. elegans, RDE-3 adds pUG tails to targets of RNA interference, as well as to transposon RNAs. RNA fragments attached to pUG tails with more than 16 perfectly alternating 3 '  U and G nucleotides become gene-silencing agents. pUG tails promote gene silencing by recruiting RNA-dependent RNA polymerases, which use pUG-tailed RNAs (pUG RNAs) as templates to synthesize small interfering RNAs (siRNAs). Our results show that cycles of pUG RNA-templated siRNA synthesis and siRNA-directed pUG RNA biogenesis underlie double-stranded-RNA-directed transgenerational epigenetic inheritance in the C. elegans germline. We speculate that this pUG RNA-siRNA silencing loop enables parents to inoculate progeny against the expression of unwanted or parasitic genetic elements.


In Caenorhabditis elegans, the ribonucleotidyltransferase RDE-3 adds alternating uridine and guanosine ribonucleotides to the 3 '  termini of RNAs, a key step in RNA interference and thus epigenetic inheritance in the C. elegans germline.


  
CRISPR screen in regulatory T cells reveals modulators of Foxp3 期刊论文
NATURE, 2020
作者:  Xu, Daqian;  Wang, Zheng;  Xia, Yan;  Shao, Fei;  Xia, Weiya;  Wei, Yongkun;  Li, Xinjian;  Qian, Xu;  Lee, Jong-Ho;  Du, Linyong;  Zheng, Yanhua;  Lv, Guishuai;  Leu, Jia-shiun;  Wang, Hongyang;  Xing, Dongming;  Liang, Tingbo;  Hung, Mien-Chie;  Lu, Zhimin
收藏  |  浏览/下载:49/0  |  提交时间:2020/07/03

Regulatory T (T-reg) cells are required to control immune responses and maintain homeostasis, but are a significant barrier to antitumour immunity(1). Conversely, T-reg instability, characterized by loss of the master transcription factor Foxp3 and acquisition of proinflammatory properties(2), can promote autoimmunity and/or facilitate more effective tumour immunity(3,4). A comprehensive understanding of the pathways that regulate Foxp3 could lead to more effective T-reg therapies for autoimmune disease and cancer. The availability of new functional genetic tools has enabled the possibility of systematic dissection of the gene regulatory programs that modulate Foxp3 expression. Here we developed a CRISPR-based pooled screening platform for phenotypes in primary mouse T-reg cells and applied this technology to perform a targeted loss-of-function screen of around 500 nuclear factors to identify gene regulatory programs that promote or disrupt Foxp3 expression. We identified several modulators of Foxp3 expression, including ubiquitin-specific peptidase 22 (Usp22) and ring finger protein 20 (Rnf20). Usp22, a member of the deubiquitination module of the SAGA chromatin-modifying complex, was revealed to be a positive regulator that stabilized Foxp3 expression  whereas the screen suggested that Rnf20, an E3 ubiquitin ligase, can serve as a negative regulator of Foxp3. T-reg-specific ablation of Usp22 in mice reduced Foxp3 protein levels and caused defects in their suppressive function that led to spontaneous autoimmunity but protected against tumour growth in multiple cancer models. Foxp3 destabilization in Usp22-deficient T-reg cells could be rescued by ablation of Rnf20, revealing a reciprocal ubiquitin switch in T-reg cells. These results reveal previously unknown modulators of Foxp3 and demonstrate a screening method that can be broadly applied to discover new targets for T-reg immunotherapies for cancer and autoimmune disease.


A CRISPR-based screening platform was used to identify previously uncharacterized genes that regulate the regulatory T cell-specific master transcription factor Foxp3, indicating that this screening method may be broadly applicable for the discovery of other genes involved in autoimmunity and immune responses to cancer.


  
Parental-to-embryo switch of chromosome organization in early embryogenesis 期刊论文
NATURE, 2020: 142-+
作者:  Kim, Eugene;  Kerssemakers, Jacob;  Shaltiel, Indra A.;  Haering, Christian H.;  Dekker, Cees
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

Single-cell allelic HiC analysis, combined with allelic gene expression and chromatin states, reveals parent-of-origin-specific dynamics of chromosome organization and gene expression during mouse preimplantation development.


Paternal and maternal epigenomes undergo marked changes after fertilization(1). Recent epigenomic studies have revealed the unusual chromatin landscapes that are present in oocytes, sperm and early preimplantation embryos, including atypical patterns of histone modifications(2-4) and differences in chromosome organization and accessibility, both in gametes(5-8) and after fertilization(5,8-10). However, these studies have led to very different conclusions: the global absence of local topological-associated domains (TADs) in gametes and their appearance in the embryo(8,9) versus the pre-existence of TADs and loops in the zygote(5,11). The questions of whether parental structures can be inherited in the newly formed embryo and how these structures might relate to allele-specific gene regulation remain open. Here we map genomic interactions for each parental genome (including the X chromosome), using an optimized single-cell high-throughput chromosome conformation capture (HiC) protocol(12,13), during preimplantation in the mouse. We integrate chromosome organization with allelic expression states and chromatin marks, and reveal that higher-order chromatin structure after fertilization coincides with an allele-specific enrichment of methylation of histone H3 at lysine 27. These early parental-specific domains correlate with gene repression and participate in parentally biased gene expression-including in recently described, transiently imprinted loci(14). We also find TADs that arise in a non-parental-specific manner during a second wave of genome assembly. These de novo domains are associated with active chromatin. Finally, we obtain insights into the relationship between TADs and gene expression by investigating structural changes to the paternal X chromosome before and during X chromosome inactivation in preimplantation female embryos(15). We find that TADs are lost as genes become silenced on the paternal X chromosome but linger in regions that escape X chromosome inactivation. These findings demonstrate the complex dynamics of three-dimensional genome organization and gene expression during early development.


  
Nucleosome-bound SOX2 and SOX11 structures elucidate pioneer factor function 期刊论文
NATURE, 2020, 580 (7805) : 669-+
作者:  Kanarek, Naama;  Petrova, Boryana;  Sabatini, David M.
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

Cryo-electron microscopy structures of the DNA-binding domains of the pioneer transcription factor SOX2 and its close homologue SOX11 elucidate the role of these factors in initiating chromatin opening and nucleosome remodelling.


'  Pioneer'  transcription factors are required for stem-cell pluripotency, cell differentiation and cell reprogramming(1,2). Pioneer factors can bind nucleosomal DNA to enable gene expression from regions of the genome with closed chromatin. SOX2 is a prominent pioneer factor that is essential for pluripotency and self-renewal of embryonic stem cells(3). Here we report cryo-electron microscopy structures of the DNA-binding domains of SOX2 and its close homologue SOX11 bound to nucleosomes. The structures show that SOX factors can bind and locally distort DNA at superhelical location 2. The factors also facilitate detachment of terminal nucleosomal DNA from the histone octamer, which increases DNA accessibility. SOX-factor binding to the nucleosome can also lead to a repositioning of the N-terminal tail of histone H4 that includes residue lysine 16. We speculate that this repositioning is incompatible with higher-order nucleosome stacking, which involves contacts of the H4 tail with a neighbouring nucleosome. Our results indicate that pioneer transcription factors can use binding energy to initiate chromatin opening, and thereby facilitate nucleosome remodelling and subsequent transcription.


  
A satellite repeat-derived piRNA controls embryonic development of Aedes 期刊论文
NATURE, 2020, 580 (7802) : 274-+
作者:  Wagner, Felix R.;  Dienemann, Christian;  Wang, Haibo;  Stuetzer, Alexandra;  Tegunov, Dimitry;  Urlaub, Henning;  Cramer, Patrick
收藏  |  浏览/下载:33/0  |  提交时间:2020/07/03

Tandem repeat elements such as the diverse class of satellite repeats occupy large parts of eukaryotic chromosomes, mostly at centromeric, pericentromeric, telomeric and subtelomeric regions(1). However, some elements are located in euchromatic regions throughout the genome and have been hypothesized to regulate gene expression in cis by modulating local chromatin structure, or in trans via transcripts derived from the repeats(2-4). Here we show that a satellite repeat in the mosquito Aedes aegypti promotes sequence-specific gene silencing via the expression of two PIWI-interacting RNAs (piRNAs). Whereas satellite repeats and piRNA sequences generally evolve extremely quickly(5-7), this locus was conserved for approximately 200 million years, suggesting that it has a central function in mosquito biology. piRNA production commenced shortly after egg laying, and inactivation of the more abundant piRNA resulted in failure to degrade maternally deposited transcripts in the zygote and developmental arrest. Our results reveal a mechanism by which satellite repeats regulate global gene expression in trans via piRNA-mediated gene silencing that is essential for embryonic development.


A conserved satellite repeat in the mosquito Aedes aegypti encodes PIWI-interacting RNAs that promote sequence-specific gene silencing in trans and have an essential role in embryonic development.


  
Gene expression and cell identity controlled by anaphase-promoting complex 期刊论文
NATURE, 2020
作者:  Filacchione, Gianrico;  Capaccioni, Fabrizio;  Ciarniello, Mauro;  Raponi, Andrea;  Rinaldi, Giovanna;  De Sanctis, Maria Cristina;  Bockelee-Morvan, Dominique;  Erard, Stephane;  Arnold, Gabriele;  Mennella, Vito;  Formisano, Michelangelo;  Longobardo, Andrea;  Mottola, Stefano
收藏  |  浏览/下载:20/0  |  提交时间:2020/07/03

Metazoan development requires the robust proliferation of progenitor cells, the identities of which are established by tightly controlled transcriptional networks(1). As gene expression is globally inhibited during mitosis, the transcriptional programs that define cell identity must be restarted in each cell cycle(2-5) but how this is accomplished is poorly understood. Here we identify a ubiquitin-dependent mechanism that integrates gene expression with cell division to preserve cell identity. We found that WDR5 and TBP, which bind active interphase promoters(6,7), recruit the anaphase-promoting complex (APC/C) to specific transcription start sites during mitosis. This allows APC/C to decorate histones with ubiquitin chains branched at Lys11 and Lys48 (K11/K48-branched ubiquitin chains) that recruit p97 (also known as VCP) and the proteasome, which ensures the rapid expression of pluripotency genes in the next cell cycle. Mitotic exit and the re-initiation of transcription are thus controlled by a single regulator (APC/C), which provides a robust mechanism for maintaining cell identity throughout cell division.


WDR5 and TBP recruit anaphase-promoting complex to specific transcription start sites in mitosis, initiating a ubiquitin-dependent mechanism that preserves cell identity by linking gene expression and cell division.


  
The strength and pattern of natural selection on gene expression in rice 期刊论文
NATURE, 2020, 578 (7796) : 572-+
作者:  Lipson, Mark;  Ribot, Isabelle;  Mallick, Swapan;  Rohland, Nadin;  Olalde, Inigo;  Adamski, Nicole;  Broomandkhoshbacht, Nasreen;  Lawson, Ann Marie;  Lopez, Saioa;  Oppenheimer, Jonas;  Stewardson, Kristin
收藏  |  浏览/下载:29/0  |  提交时间:2020/07/03

Levels of gene expression underpin organismal phenotypes(1,2), but the nature of selection that acts on gene expression and its role in adaptive evolution remain unknown(1,2). Here we assayed gene expression in rice (Oryza sativa)(3), and used phenotypic selection analysis to estimate the type and strength of selection on the levels of more than 15,000 transcripts(4,5). Variation in most transcripts appears (nearly) neutral or under very weak stabilizing selection in wet paddy conditions (with median standardized selection differentials near zero), but selection is stronger under drought conditions. Overall, more transcripts are conditionally neutral (2.83%) than are antagonistically pleiotropic(6) (0.04%), and transcripts that display lower levels of expression and stochastic noise(7-9) and higher levels of plasticity(9) are under stronger selection. Selection strength was further weakly negatively associated with levels of cis-regulation and network connectivity(9). Our multivariate analysis suggests that selection acts on the expression of photosynthesis genes(4,5), but that the efficacy of selection is genetically constrained under drought conditions(10). Drought selected for earlier flowering(11,12) and a higher expression of OsMADS18 (Os07g0605200), which encodes a MADS-box transcription factor and is a known regulator of early flowering(13)-marking this gene as a drought-escape gene(11,12). The ability to estimate selection strengths provides insights into how selection can shape molecular traits at the core of gene action.


Phenotypic selection analysis is used to estimate the type and strength of selection that acts on more than 15,000 transcripts in rice (Oryza sativa), which provides insight into the adaptive evolutionary role of selection on gene expression.