GSTDTAP

浏览/检索结果: 共10条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Domestic groundwater abstraction in Lagos, Nigeria: a disjuncture in the science-policy-practice interface? 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (4)
作者:  Healy, A.;  Upton, K.;  Capstick, S.;  Bristow, G.;  Tijani, M.;  MacDonald, A.;  Goni, I;  Bukar, Y.;  Whitmarsh, L.;  Theis, S.;  Danert, K.;  Allan, S.
收藏  |  浏览/下载:23/0  |  提交时间:2020/07/02
groundwater  boreholes  households  agency  behaviour  knowledge transfer  policy  
Clades of huge phages from across Earth's ecosystems 期刊论文
NATURE, 2020, 578 (7795) : 425-+
作者:  Zhang, Bing;  Ma, Sai;  Rachmin, Inbal;  He, Megan;  Baral, Pankaj;  Choi, Sekyu;  Goncalves, William A.;  Shwartz, Yulia;  Fast, Eva M.;  Su, Yiqun;  Zon, Leonard I.;  Regev, Aviv;  Buenrostro, Jason D.;  Cunha, Thiago M.;  Chiu, Isaac M.
收藏  |  浏览/下载:91/0  |  提交时间:2020/07/03

Bacteriophages typically have small genomes(1) and depend on their bacterial hosts for replication(2). Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is-to our knowledge-the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR-Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR-Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR-Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth'  s ecosystems.


Genomic analyses of major clades of huge phages sampled from across Earth'  s ecosystems show that they have diverse genetic inventories, including a variety of CRISPR-Cas systems and translation-relevant genes.


  
Giant virus diversity and host interactions through global metagenomics 期刊论文
NATURE, 2020: 1-+
作者:  Su, Jie;  Morgani, Sophie M.;  David, Charles J.;  Wang, Qiong;  Er, Ekrem Emrah;  Huang, Yun-Han;  Basnet, Harihar;  Zou, Yilong;  Shu, Weiping;  Soni, Rajesh K.;  Hendrickson, Ronald C.;  Hadjantonakis, Anna-Katerina;  Massague, Joan
收藏  |  浏览/下载:59/0  |  提交时间:2020/07/03

Analysis of metagenomics data revealed that large and giant viruses are globally widely distributed and are associated with most major eukaryotic lineages.


Our current knowledge about nucleocytoplasmic large DNA viruses (NCLDVs) is largely derived from viral isolates that are co-cultivated with protists and algae. Here we reconstructed 2,074 NCLDV genomes from sampling sites across the globe by building on the rapidly increasing amount of publicly available metagenome data. This led to an 11-fold increase in phylogenetic diversity and a parallel 10-fold expansion in functional diversity. Analysis of 58,023 major capsid proteins from large and giant viruses using metagenomic data revealed the global distribution patterns and cosmopolitan nature of these viruses. The discovered viral genomes encoded a wide range of proteins with putative roles in photosynthesis and diverse substrate transport processes, indicating that host reprogramming is probably a common strategy in the NCLDVs. Furthermore, inferences of horizontal gene transfer connected viral lineages to diverse eukaryotic hosts. We anticipate that the global diversity of NCLDVs that we describe here will establish giant viruses-which are associated with most major eukaryotic lineages-as important players in ecosystems across Earth'  s biomes.


  
Connecting research infrastructures, scientific and sectorial networks to support integrated management of Mediterranean coastal and rural areas 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2019, 14 (11)
作者:  Martinez-Lopez, Javier;  Bergillos, Rafael J.;  Bonet, Francisco J.;  de Vente, Joris
收藏  |  浏览/下载:20/0  |  提交时间:2020/02/17
coastal areas  research infrastructures  knowledge transfer  decision making  integrated management  international cooperation  
Knowledge flow in low-carbon technology transfer: A case of India's wind power industry 期刊论文
ENERGY POLICY, 2018, 123: 104-116
作者:  Hayashi, Daisuke
收藏  |  浏览/下载:22/0  |  提交时间:2019/04/09
Technology transfer  Technological capabilities  Knowledge Innovation  Wind power  India  
Total Food 2017 会议
Norwich, United Kingdom, 会议类型: Conference, 2017