GSTDTAP

浏览/检索结果: 共10条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Extreme rainfall triggered the 2018 rift eruption at Kilauea Volcano 期刊论文
NATURE, 2020, 580 (7804) : 491-+
作者:  Cloutier, Richard;  Clement, Alice M.;  Lee, Michael S. Y.;  Noel, Roxanne;  Bechard, Isabelle;  Roy, Vincent;  Long, John A.
收藏  |  浏览/下载:60/0  |  提交时间:2020/05/13

The May 2018 rift intrusion and eruption of Kilauea Volcano, Hawai'  i, represented one of its most extraordinary eruptive sequences in at least 200 years, yet the trigger mechanism remains elusive(1). The event was preceded by several months of anomalously high precipitation. It has been proposed that rainfall can modulate shallow volcanic activity(2,3), but it remains unknown whether it can have impacts at the greater depths associated with magma transport. Here we show that immediately before and during the eruption, infiltration of rainfall into Kilauea Volcano'  s subsurface increased pore pressure at depths of 1 to 3 kilometres by 0.1 to 1 kilopascals, to its highest pressure in almost 50 years. We propose that weakening and mechanical failure of the edifice was driven by changes in pore pressure within the rift zone, prompting opportunistic dyke intrusion and ultimately facilitating the eruption. A precipitation-induced eruption trigger is consistent with the lack of precursory summit inflation, showing that this intrusion-unlike others-was not caused by the forceful intrusion of new magma into the rift zone. Moreover, statistical analysis of historic eruption occurrence suggests that rainfall patterns contribute substantially to the timing and frequency of Kilauea'  s eruptions and intrusions. Thus, volcanic activity can be modulated by extreme rainfall triggering edifice rock failure-a factor that should be considered when assessing volcanic hazards. Notably, the increasingly extreme weather patterns associated with ongoing anthropogenic climate change could increase the potential for rainfall-triggered volcanic phenomena worldwide.


Immediately before and during the eruption of Ki & x304  lauea Volcano in May 2018, anomalously high rainfall increased the pore pressure in the subsurface to its highest level in 50 years, causing weakening and mechanical failure of the edifice.


  
Femtosecond-to-millisecond structural changes in a light-driven sodium pump 期刊论文
NATURE, 2020, 583 (7815) : 314-+
作者:  Moore, Luiza;  Leongamornlert, Daniel;  Coorens, Tim H. H.;  Sanders, Mathijs A.;  Ellis, Peter;  Dentro, Stefan C.;  Dawson, Kevin J.;  Butler, Tim;  Rahbari, Raheleh;  Mitchell, Thomas J.;  Maura, Francesco;  Nangalia, Jyoti;  Tarpey, Patrick S.;  Brunner, Simon F.;  Lee-Six, Henry;  Hooks, Yvette;  Moody, Sarah;  Mahbubani, Krishnaa T.;  Jimenez-Linan, Mercedes;  Brosens, Jan J.;  Iacobuzio-Donahue, Christine A.;  Martincorena, Inigo;  Saeb-Parsy, Kourosh;  Campbell, Peter J.;  Stratton, Michael R.
收藏  |  浏览/下载:57/0  |  提交时间:2020/07/03

Light-driven sodium pumps actively transport small cations across cellular membranes(1). These pumps are used by microorganisms to convert light into membrane potential and have become useful optogenetic tools with applications in neuroscience. Although the resting state structures of the prototypical sodium pump Krokinobacter eikastus rhodopsin 2 (KR2) have been solved(2,3), it is unclear how structural alterations overtime allow sodium to be translocated against a concentration gradient. Here, using the Swiss X-ray Free Electron Laser(4), we have collected serial crystallographic data at ten pump-probe delays from femtoseconds to milliseconds. High-resolution structural snapshots throughout the KR2 photocycle show how retinal isomerization is completed on the femtosecond timescale and changes the local structure of the binding pocket in the early nanoseconds. Subsequent rearrangements and deprotonation of the retinal Schiff base open an electrostatic gate in microseconds. Structural and spectroscopic data, in combination with quantum chemical calculations, indicate that a sodium ion bind stransiently close to the retinal within one millisecond. In the last structural intermediate, at 20 milliseconds after activation, we identified a potential second sodium-binding site close to the extracellular exit. These results provide direct molecular insight into the dynamics of active cation transport across biological membranes.


  
Limits on gas impermeability of graphene 期刊论文
NATURE, 2020, 579 (7798) : 229-+
作者:  Pagano, Justin K.;  Xie, Jing;  Erickson, Karla A.;  Cope, Stephen K.;  Scott, Brian L.;  Wu, Ruilian;  Waterman, Rory;  Morris, David E.;  Yang, Ping;  Gagliardi, Laura;  Kiplinger, Jaqueline L.
收藏  |  浏览/下载:36/0  |  提交时间:2020/07/03

Despite being only one-atom thick, defect-free graphene is considered to be completely impermeable to all gases and liquids(1-10). This conclusion is based on theory(3-8) and supported by experiments(1,9,10) that could not detect gas permeation through micrometre-size membranes within a detection limit of 10(5) to 10(6) atoms per second. Here, using small monocrystalline containers tightly sealed with graphene, we show that defect-free graphene is impermeable with an accuracy of eight to nine orders of magnitude higher than in the previous experiments. We are capable of discerning (but did not observe) permeation of just a few helium atoms per hour, and this detection limit is also valid for all other gases tested (neon, nitrogen, oxygen, argon, krypton and xenon), except for hydrogen. Hydrogen shows noticeable permeation, even though its molecule is larger than helium and should experience a higher energy barrier. This puzzling observation is attributed to a two-stage process that involves dissociation of molecular hydrogen at catalytically active graphene ripples, followed by adsorbed atoms flipping to the other side of the graphene sheet with a relatively low activation energy of about 1.0 electronvolt, a value close to that previously reported for proton transport(11,12). Our work provides a key reference for the impermeability of two-dimensional materials and is important from a fundamental perspective and for their potential applications.


  
Investigating CO2 mitigation potentials and the impact of oil price distortion in China's transport sector 期刊论文
ENERGY POLICY, 2019, 130: 320-327
作者:  Wang, Xiaolei;  Bai, Mengqi;  Xie, Chunping
收藏  |  浏览/下载:15/0  |  提交时间:2019/11/27
Oil price distortion  Substitution elasticity  CO2 mitigation potential  China'  s transport sector  
Accessing provincial energy efficiencies in China's transport sector 期刊论文
ENERGY POLICY, 2018, 123: 525-532
作者:  Xie, Chunping;  Bai, Mengqi;  Wang, Xiaolei
收藏  |  浏览/下载:17/0  |  提交时间:2019/04/09
Transport sector  Energy efficiency  Energy-saving potential  Stochastic frontier analysis  
Shipborne observations of atmospheric black carbon aerosol from Shanghai to the Arctic Ocean during the 7th Chinese Arctic Research Expedition 期刊论文
ATMOSPHERIC RESEARCH, 2018, 210: 34-40
作者:  Ding, Minghu;  Tian, Biao;  Zhang, Tong;  Tang, Jie;  Peng, Hao;  Bian, Lingen;  Sun, Weijun
收藏  |  浏览/下载:21/0  |  提交时间:2019/04/09
Black carbon  Aerial survey  Air mass backward trajectory  Arctic transport potential  
Disentangling the major source areas for an intense aerosol advection in the Central Mediterranean on the basis of Potential Source Contribution Function modeling of chemical and size distribution measurements 期刊论文
ATMOSPHERIC RESEARCH, 2018, 204: 67-77
作者:  Petroselli, Chiara;  Crocchianti, Stefano;  Moroni, Beatrice;  Castellini, Silvia;  Selvaggi, Roberta;  Nava, Silvia;  Calzolai, Giulia;  Lucarelli, Franco;  Cappelletti, David
收藏  |  浏览/下载:21/0  |  提交时间:2019/04/09
Potential Source Contribution Function  Aerosol size distribution  Biomass burning  Long-range transport  Saharan dust  
Changes in Stratospheric Transport and Mixing During Sudden Stratospheric Warmings 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2018, 123 (7) : 3356-3373
作者:  de la Camara, A.;  Abalos, M.;  Hitchcock, P.
收藏  |  浏览/下载:20/0  |  提交时间:2019/04/09
sudden stratospheric warming  transport and mixing  Brewer-Dobson circulation  effective diffusivity  stratospheric dynamics  potential vorticity  
Project 57 Air Monitoring Annual Report - Fiscal Year 2013 (October 1, 2012 to September 30, 2013) 科技报告
来源:US Department of Energy (DOE). 出版年: 2014
作者:  Miller, Julianne J.;  McCurdy, Greg;  Mizell, Steve A
收藏  |  浏览/下载:14/0  |  提交时间:2019/04/05
The U.S. Department of Energy (DOE)  National Nuclear Security Administration  Nevada Field Office (NNSA/NFO) is currently working to achieve regulatory closure of radionuclide-contaminated Soils sites under its auspices. Corrective Action Unit (CAU) 415  Project 57 No. 1 Plutonium Dispersion Site is located in Emigrant Valley  Nevada  on Range 4808A of the Nevada Test and Training Range (NTTR)  and consists of one Corrective Action Site (CAS): NAFR-23-02  Pu Contaminated Soil. Closure plans being developed for the CAUs both on and off of the Nevada National Security Site (NNSS) may include postclosure monitoring for the possible release of radioactive contaminants. Determining the potential for transport of radionuclide-contaminated soils under ambient climatic conditions will facilitate an appropriate closure design and postclosure monitoring program. The DOE has authorized the Desert Research Institute (DRI) to conduct field assessments of potential transport of radionuclide-contaminated soil from the Project 57 site during ambient wind events. The assessment is intended to provide site-specific information on meteorological conditions that result in airborne soil particle redistribution  as well as determine which  if any  radiological contaminants may be entrained with the soil particles and estimate their concentrations.  
Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down Gradient of the Proposed Yucca Mountain Nuclear Waste Repository, U. S. Department of Energy Grant DE-RW0000233 2010 Project Report, prepared by The Hydrodynamics Group, LLC for Inyo Count 科技报告
来源:US Department of Energy (DOE). 出版年: 2010
作者:  King, Michael J;  Bredehoeft, John D., Dr.
收藏  |  浏览/下载:7/0  |  提交时间:2019/04/05
Yucca Mountain  Death Valley  Inyo County  Southern Funeral Mountain Range  Furnace Creek  Amargosa Valley  ground water  ground water model  numerical ground water model  radionuclide  lower carbonate aquifer  hydraulic  potential transport  water discha