GSTDTAP

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1 期刊论文
NATURE, 2020, 577 (7788) : 109-+
作者:  Tao, Panfeng;  Sun, Jinqiao;  Wu, Zheming;  Wang, Shihao;  Wang, Jun;  Li, Wanjin;  Pan, Heling;  Bai, Renkui;  Zhang, Jiahui;  Wang, Ying;  Lee, Pui Y.;  Ying, Wenjing;  Zhou, Qinhua;  Hou, Jia;  Wang, Wenjie;  Sun, Bijun;  Yang, Mi;  Liu, Danru;  Fang, Ran;  Han, Huan;  Yang, Zhaohui;  Huang, Xin;  Li, Haibo;  Deuitch, Natalie;  Zhang, Yuan;  Dissanayake, Dilan;  Haude, Katrina;  McWalter, Kirsty;  Roadhouse, Chelsea;  MacKenzie, Jennifer J.;  Laxer, Ronald M.;  Aksentijevich, Ivona;  Yu, Xiaomin;  Wang, Xiaochuan;  Yuan, Junying;  Zhou, Qing
收藏  |  浏览/下载:57/0  |  提交时间:2020/07/03

Activation of RIPK1 controls TNF-mediated apoptosis, necroptosis and inflammatory pathways(1). Cleavage of human and mouse RIPK1 after residues D324 and D325, respectively, by caspase-8 separates the RIPK1 kinase domain from the intermediate and death domains. The D325A mutation in mouse RIPK1 leads to embryonic lethality during mouse development(2,3). However, the functional importance of blocking caspase-8-mediated cleavage of RIPK1 on RIPK1 activation in humans is unknown. Here we identify two families with variants in RIPK1 (D324V and D324H) that lead to distinct symptoms of recurrent fevers and lymphadenopathy in an autosomaldominant manner. Impaired cleavage of RIPK1 D324 variants by caspase-8 sensitized patients'  peripheral blood mononuclear cells to RIPK1 activation, apoptosis and necroptosis induced by TNF. The patients showed strong RIPK1-dependent activation of inflammatory signalling pathways and overproduction of inflammatory cytokines and chemokines compared with unaffected controls. Furthermore, we show that expression of the RIPK1 mutants D325V or D325H in mouse embryonic fibroblasts confers not only increased sensitivity to RIPK1 activation-mediated apoptosis and necroptosis, but also induction of pro-inflammatory cytokines such as IL-6 and TNF. By contrast, patient-derived fibroblasts showed reduced expression of RIPK1 and downregulated production of reactive oxygen species, resulting in resistance to necroptosis and ferroptosis. Together, these data suggest that human non-cleavable RIPK1 variants promote activation of RIPK1, and lead to an autoinflammatory disease characterized by hypersensitivity to apoptosis and necroptosis and increased inflammatory response in peripheral blood mononuclear cells, as well as a compensatory mechanism to protect against several pro-death stimuli in fibroblasts.


  
A metabolic pathway for bile acid dehydroxylation by the gut microbiome 期刊论文
NATURE, 2020
作者:  Zhong, Miao;  Tran, Kevin;  Min, Yimeng;  Wang, Chuanhao;  Wang, Ziyun;  Dinh, Cao-Thang;  De Luna, Phil;  Yu, Zongqian;  Rasouli, Armin Sedighian;  Brodersen, Peter;  Sun, Song;  Voznyy, Oleksandr;  Tan, Chih-Shan;  Askerka, Mikhail;  Che, Fanglin;  Liu, Min;  Seifitokaldani, Ali;  Pang, Yuanjie;  Lo, Shen-Chuan;  Ip, Alexander;  Ulissi, Zachary;  Sargent, Edward H.
收藏  |  浏览/下载:44/0  |  提交时间:2020/07/03

The biosynthetic pathway that produces the secondary bile acids DCA and LCA in human gut microbes has been fully characterized, engineered into another bacterial host, and used to confer DCA production in germ-free mice-an important proof-of-principle for the engineering of gut microbial pathways.


The gut microbiota synthesize hundreds of molecules, many of which influence host physiology. Among the most abundant metabolites are the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA), which accumulate at concentrations of around 500 mu M and are known to block the growth ofClostridium difficile(1), promote hepatocellular carcinoma(2)and modulate host metabolism via the G-protein-coupled receptor TGR5 (ref.(3)). More broadly, DCA, LCA and their derivatives are major components of the recirculating pool of bile acids(4)  the size and composition of this pool are a target of therapies for primary biliary cholangitis and nonalcoholic steatohepatitis. Nonetheless, despite the clear impact of DCA and LCA on host physiology, an incomplete knowledge of their biosynthetic genes and a lack of genetic tools to enable modification of their native microbial producers limit our ability to modulate secondary bile acid levels in the host. Here we complete the pathway to DCA and LCA by assigning and characterizing enzymes for each of the steps in its reductive arm, revealing a strategy in which the A-B rings of the steroid core are transiently converted into an electron acceptor for two reductive steps carried out by Fe-S flavoenzymes. Using anaerobic in vitro reconstitution, we establish that a set of six enzymes is necessary and sufficient for the eight-step conversion of cholic acid to DCA. We then engineer the pathway intoClostridium sporogenes, conferring production of DCA and LCA on a nonproducing commensal and demonstrating that a microbiome-derived pathway can be expressed and controlled heterologously. These data establish a complete pathway to two central components of the bile acid pool.


  
Zucchini consensus motifs determine the mechanism of pre-piRNA production 期刊论文
NATURE, 2020, 578 (7794) : 311-+
作者:  Clark, Timothy D.;  Raby, Graham D.;  Roche, Dominique G.;  Binning, Sandra A.;  Speers-Roesch, Ben;  Jutfelt, Fredrik;  Sundin, Josefin
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

PIWI-interacting RNAs (piRNAs) of between approximately 24 and 31 nucleotides in length guide PIWI proteins to silence transposons in animal gonads, thereby ensuring fertility(1). In the biogenesis of piRNAs, PIWI proteins are first loaded with 5 '  -monophosphorylated RNA fragments called pre-pre-piRNAs, which then undergo endonucleolytic cleavage to produce pre-piRNAs(1,2). Subsequently, the 3 '  -ends of pre-piRNAs are trimmed by the exonuclease Trimmer (PNLDC1 in mouse)(3-6) and 2 '  -O-methylated by the methyltransferase Hen1 (HENMT1 in mouse)(7-9), generating mature piRNAs. It is assumed that the endonuclease Zucchini (MitoPLD in mouse) is a major enzyme catalysing the cleavage of pre-pre-piRNAs into pre-piRNAs(10-13). However, direct evidence for this model is lacking, and how pre-piRNAs are generated remains unclear. Here, to analyse pre-piRNA production, we established a Trimmer-knockout silkworm cell line and derived a cell-free system that faithfully recapitulates Zucchini-mediated cleavage of PIWI-loaded pre-pre-piRNAs. We found that pre-piRNAs are generated by parallel Zucchini-dependent and -independent mechanisms. Cleavage by Zucchini occurs at previously unrecognized consensus motifs on pre-pre-piRNAs, requires the RNA helicase Armitage, and is accompanied by 2 '  -O-methylation of pre-piRNAs. By contrast, slicing of pre-pre-piRNAs with weak Zucchini motifs is achieved by downstream complementary piRNAs, producing pre-piRNAs without 2 '  -O-methylation. Regardless of the endonucleolytic mechanism, pre-piRNAs are matured by Trimmer and Hen1. Our findings highlight multiplexed processing of piRNA precursors that supports robust and flexible piRNA biogenesis.


A silkworm model recapitulates key steps of Zucchini-mediated cleavage of pre-pre-piRNA and provides insights into Zucchini-mediated and -independent pathways that generate pre-piRNAs, which converge to a common piRNA maturation step.


  
Exploring the Sources of Unexpected High Methane Concentrations and Fluxes From Alpine Headwater Streams 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (12) : 6614-6625
作者:  Flury, S.;  Ulseth, A. J.
收藏  |  浏览/下载:11/0  |  提交时间:2019/11/26
Methane  mountain streams  carbon  greenhouse gas emisisons  production pathways  stable carbon isotopes