GSTDTAP

浏览/检索结果: 共123条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
欧洲研究基于机器学习预测旱地生态系统功能突变的概率 快报文章
资源环境快报,2025年第1期
作者:  裴惠娟
Microsoft Word(18Kb)  |  收藏  |  浏览/下载:520/0  |  提交时间:2025/01/15
Dryland  Ecosystem Function  Abrupt Shift  
联合国机构发起价值数十亿美元倡议来改造城市 快报文章
资源环境快报,2021年第19期
作者:  李恒吉
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:707/1  |  提交时间:2021/10/15
UNEP  GEF  Urban Shift  
Prolonged Periodicity and Eastward Shift of the January North Pacific Oscillation Since the Mid-1990s and Its Linkage With Sea Ice Anomalies in the Barents Sea 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (13)
作者:  Xu, Zhiqing;  Fan, Ke
收藏  |  浏览/下载:29/0  |  提交时间:2020/08/18
January North Pacific Oscillation  prolonged periodicity  eastward shift  sea ice anomalies in the Barents Sea  the mid-1990s  
Emulating climate extreme indices 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (7)
作者:  Tebaldi, C.;  Armbruster, A.;  Engler, H. P.;  Link, R.
收藏  |  浏览/下载:19/0  |  提交时间:2020/08/18
extreme indices  emulation  scenarios  pattern scaling  time shift  internal variability  error metric  
An interdecadal extension of the Indo-Pacific warm pool and its strengthened influence on the South China Sea summer monsoon since the late 1980s 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (6)
作者:  Yin, Xiaoxue;  Huangfu, Jingliang;  Zhou, Lian-Tong
收藏  |  浏览/下载:23/0  |  提交时间:2020/07/02
Indo-Pacific warm pool  South China Sea summer monsoon  interdecadal shift  intraseasonal oscillation  
Linkage between ENSO phases and western US snow water equivalent 期刊论文
ATMOSPHERIC RESEARCH, 2020, 236
作者:  Thakur, Balbhadra;  Kalra, Ajay;  Lakshmi, Venkat;  Lamb, Kenneth W.;  Miller, William P.;  Tootle, Glenn
收藏  |  浏览/下载:21/0  |  提交时间:2020/07/02
Climate change  Snow water equivalent  ENSO  Trend  Shift  Persistence  
The online competition between pro- and anti-vaccination views 期刊论文
NATURE, 2020, 582 (7811) : 230-+
作者:  Wu, Fan;  Zhao, Su;  Yu, Bin;  Chen, Yan-Mei;  Wang, Wen;  Song, Zhi-Gang;  Hu, Yi;  Tao, Zhao-Wu;  Tian, Jun-Hua;  Pei, Yuan-Yuan;  Yuan, Ming-Li;  Zhang, Yu-Ling;  Dai, Fa-Hui;  Liu, Yi;  Wang, Qi-Min;  Zheng, Jiao-Jiao;  Xu, Lin;  Holmes, Edward C.;  Zhang, Yong-Zhen
收藏  |  浏览/下载:37/0  |  提交时间:2020/07/03

Insights into the interactions between pro- and anti-vaccination clusters on Facebook can enable policies and approaches that attempt to interrupt the shift to anti-vaccination views and persuade undecided individuals to adopt a pro-vaccination stance.


Distrust in scientific expertise(1-14) is dangerous. Opposition to vaccination with a future vaccine against SARS-CoV-2, the causal agent of COVID-19, for example, could amplify outbreaks(2-4), as happened for measles in 2019(5,6). Homemade remedies(7,8) and falsehoods are being shared widely on the Internet, as well as dismissals of expert advice(9-11). There is a lack of understanding about how this distrust evolves at the system level(13,14). Here we provide a map of the contention surrounding vaccines that has emerged from the global pool of around three billion Facebook users. Its core reveals a multi-sided landscape of unprecedented intricacy that involves nearly 100 million individuals partitioned into highly dynamic, interconnected clusters across cities, countries, continents and languages. Although smaller in overall size, anti-vaccination clusters manage to become highly entangled with undecided clusters in the main online network, whereas pro-vaccination clusters are more peripheral. Our theoretical framework reproduces the recent explosive growth in anti-vaccination views, and predicts that these views will dominate in a decade. Insights provided by this framework can inform new policies and approaches to interrupt this shift to negative views. Our results challenge the conventional thinking about undecided individuals in issues of contention surrounding health, shed light on other issues of contention such as climate change(11), and highlight the key role of network cluster dynamics in multi-species ecologies(15).


  
Massively parallel coherent laser ranging using a soliton microcomb 期刊论文
NATURE, 2020, 581 (7807) : 164-+
作者:  Casanova, Emmanuelle;  Knowles, Timothy D. J.;  Bayliss, Alex;  Dunne, Julie;  Baranski, Marek Z.;  Denaire, Anthony;  Lefranc, Philippe;  di Lernia, Savino;  Roffet-Salque, Melanie;  Smyth, Jessica;  Barclay, Alistair;  Gillard, Toby;  Classen, Erich;  Coles, Bryony;  Ilett, Michael;  Jeunesse, Christian;  Krueger, Marta;  Marciniak, Arkadiusz;  Minnitt, Steve;  Rotunno, Rocco;  van de Velde, Pieter;  van Wijk, Ivo;  Cotton, Jonathan;  Daykin, Andy;  Evershed, Richard P.
收藏  |  浏览/下载:63/0  |  提交时间:2020/07/03

Coherent ranging, also known as frequency-modulated continuous-wave (FMCW) laser-based light detection and ranging (lidar)(1) is used for long-range three-dimensional distance and velocimetry in autonomous driving(2,3). FMCW lidar maps distance to frequency(4,5) using frequency-chirped waveforms and simultaneously measures the Doppler shift of the reflected laser light, similar to sonar or radar(6,7) and coherent detection prevents interference from sunlight and other lidar systems. However, coherent ranging has a lower acquisition speed and requires precisely chirped(8) and highly coherent(5) laser sources, hindering widespread use of the lidar system and impeding parallelization, compared to modern time-of-flight ranging systems that use arrays of individual lasers. Here we demonstrate a massively parallel coherent lidar scheme using an ultra-low-loss photonic chip-based soliton microcomb(9). By fast chirping of the pump laser in the soliton existence range(10) of a microcomb with amplitudes of up to several gigahertz and a sweep rate of up to ten megahertz, a rapid frequency change occurs in the underlying carrier waveform of the soliton pulse stream, but the pulse-to-pulse repetition rate of the soliton pulse stream is retained. As a result, the chirp from a single narrow-linewidth pump laser is transferred to all spectral comb teeth of the soliton at once, thus enabling parallelism in the FMCW lidar. Using this approach we generate 30 distinct channels, demonstrating both parallel distance and velocity measurements at an equivalent rate of three megapixels per second, with the potential to improve sampling rates beyond 150 megapixels per second and to increase the image refresh rate of the FMCW lidar by up to two orders of magnitude without deterioration of eye safety. This approach, when combined with photonic phase arrays(11) based on nanophotonic gratings(12), provides a technological basis for compact, massively parallel and ultrahigh-frame-rate coherent lidar systems.


  
Frequency-Dependent Behavior of Zonal Jet Variability 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (6)
作者:  Lindgren, Erik A.;  Sheshadri, Aditi;  Plumb, R. Alan
收藏  |  浏览/下载:21/0  |  提交时间:2020/07/02
Storm tracks  Southern Annular Mode  Jet shift  Low-frequency behavior  Temporal filter  
A pause in Southern Hemisphere circulation trends due to the Montreal Protocol 期刊论文
NATURE, 2020, 579 (7800) : 544-548
作者:  Imai, Yu;  Meyer, Kirsten J.;  Iinishi, Akira;  Favre-Godal, Quentin;  Green, Robert;  Manuse, Sylvie;  Caboni, Mariaelena;  Mori, Miho;  Niles, Samantha;  Ghiglieri, Meghan;  Honrao, Chandrashekhar;  Ma, Xiaoyu;  Guo, Jason J.;  Makriyannis, Alexandros;  Linares-Otoya, Luis;  Boehringer, Nils;  Wuisan, Zerlina G.;  Kaur, Hundeep;  Wu, Runrun;  Mateus, Andre
收藏  |  浏览/下载:38/0  |  提交时间:2020/05/13

Observations show robust near-surface trends in Southern Hemisphere tropospheric circulation towards the end of the twentieth century, including a poleward shift in the mid-latitude jet(1,2), a positive trend in the Southern Annular Mode(1,3-6) and an expansion of the Hadley cell(7,8). It has been established that these trends were driven by ozone depletion in the Antarctic stratosphere due to emissions of ozone-depleting substances(9-11). Here we show that these widely reported circulation trends paused, or slightly reversed, around the year 2000. Using a pattern-based detection and attribution analysis of atmospheric zonal wind, we show that the pause in circulation trends is forced by human activities, and has not occurred owing only to internal or natural variability of the climate system. Furthermore, we demonstrate that stratospheric ozone recovery, resulting from the Montreal Protocol, is the key driver of the pause. Because pre-2000 circulation trends have affected precipitation(12-14), and potentially ocean circulation and salinity(15-17), we anticipate that a pause in these trends will have wider impacts on the Earth system. Signatures of the effects of the Montreal Protocol and the associated stratospheric ozone recovery might therefore manifest, or have already manifested, in other aspects of the Earth system.