GSTDTAP

浏览/检索结果: 共47条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Hepatic NADH reductive stress underlies common variation in metabolic traits 期刊论文
NATURE, 2020, 583 (7814) : 122-+
作者:  Skov, Laurits;  Coll Macia, Moises;  Sveinbjoernsson, Gardar;  Mafessoni, Fabrizio;  Lucotte, Elise A.;  Einarsdottir, Margret S.;  Jonsson, Hakon;  Halldorsson, Bjarni;  Gudbjartsson, Daniel F.;  Helgason, Agnar;  Schierup, Mikkel Heide;  Stefansson, Kari
收藏  |  浏览/下载:43/0  |  提交时间:2020/07/03

The cellular NADH/NAD(+) ratio is fundamental to biochemistry, but the extent to which it reflects versus drives metabolic physiology in vivo is poorly understood. Here we report the in vivo application of Lactobacillus brevis (Lb)NOX1, a bacterial water-forming NADH oxidase, to assess the metabolic consequences of directly lowering the hepatic cytosolic NADH/NAD(+) ratio in mice. By combining this genetic tool with metabolomics, we identify circulating alpha-hydroxybutyrate levels as a robust marker of an elevated hepatic cytosolic NADH/NAD(+) ratio, also known as reductive stress. In humans, elevations in circulating alpha-hydroxybutyrate levels have previously been associated with impaired glucose tolerance(2), insulin resistance(3) and mitochondrial disease(4), and are associated with a common genetic variant in GCKR(5), which has previously been associated with many seemingly disparate metabolic traits. Using LbNOX, we demonstrate that NADH reductive stress mediates the effects of GCKR variation on many metabolic traits, including circulating triglyceride levels, glucose tolerance and FGF21 levels. Our work identifies an elevated hepatic NADH/NAD(+) ratio as a latent metabolic parameter that is shaped by human genetic variation and contributes causally to key metabolic traits and diseases. Moreover, it underscores the utility of genetic tools such as LbNOX to empower studies of '  causal metabolism'  .


The authors identify an increased hepatic NADH/NAD(+) ratio as an underlying metabolic parameter that is shaped by human genetic variation and contributes causally to key metabolic traits and diseases.


  
Two-dimensional halide perovskite lateral epitaxial heterostructures 期刊论文
NATURE, 2020, 580 (7805) : 614-+
作者:  Cabrita, Rita;  Lauss, Martin;  Sanna, Adriana;  Donia, Marco;  Larsen, Mathilde;  Mitra, Shamik;  Johansson, Iva;  Phung, Bengt;  Harbst, Katja;  Vallon-Christersson, Johan;  van Schoiack, Alison;  Lovgren, Kristina;  Warren, Sarah;  Jirstrom, Karin;  Olsson, Hakan;  Pietras, Kristian;  Ingvar, Christian;  Isaksson, Karolin
收藏  |  浏览/下载:46/0  |  提交时间:2020/07/03

Epitaxial heterostructures based on oxide perovskites and III-V, II-VI and transition metal dichalcogenide semiconductors form the foundation of modern electronics and optoelectronics(1-7). Halide perovskites-an emerging family of tunable semiconductors with desirable properties-are attractive for applications such as solution-processed solar cells, light-emitting diodes, detectors and lasers(8-15). Their inherently soft crystal lattice allows greater tolerance to lattice mismatch, making them promising for heterostructure formation and semiconductor integration(16,17). Atomically sharp epitaxial interfaces are necessary to improve performance and for device miniaturization. However, epitaxial growth of atomically sharp heterostructures of halide perovskites has not yet been achieved, owing to their high intrinsic ion mobility, which leads to interdiffusion and large junction widths(18-21), and owing to their poor chemical stability, which leads to decomposition of prior layers during the fabrication of subsequent layers. Therefore, understanding the origins of this instability and identifying effective approaches to suppress ion diffusion are of great importance(22-26). Here we report an effective strategy to substantially inhibit in-plane ion diffusion in two-dimensional halide perovskites by incorporating rigid pi-conjugated organic ligands. We demonstrate highly stable and tunable lateral epitaxial heterostructures, multiheterostructures and superlattices. Near-atomically sharp interfaces and epitaxial growth are revealed by low-dose aberration-corrected high-resolution transmission electron microscopy. Molecular dynamics simulations confirm the reduced heterostructure disorder and larger vacancy formation energies of the two-dimensional perovskites in the presence of conjugated ligands. These findings provide insights into the immobilization and stabilization of halide perovskite semiconductors and demonstrate a materials platform for complex and molecularly thin superlattices, devices and integrated circuits.


An epitaxial growth strategy that improves the stability of two-dimensional halide perovskites by inhibiting ion diffusion in their heterostructures using rigid pi-conjugated ligands is demonstrated, and shows near-atomically sharp interfaces.


  
gamma delta T cells and adipocyte IL-17RC control fat innervation and thermogenesis 期刊论文
NATURE, 2020, 578 (7796) : 610-+
作者:  Staus, Dean P.;  Hu, Hongli;  Robertson, Michael J.;  Kleinhenz, Alissa L. W.;  Wingler, Laura M.;  Capel, William D.;  Latorraca, Naomi R.;  Lefkowitz, Robert J.;  Skiniotis, Georgios
收藏  |  浏览/下载:74/0  |  提交时间:2020/07/03

V gamma 6(+) V delta 1(+) gamma delta T cells control tolerance to cold by activating adipocyte IL-17RC and promoting sympathetic innervation of thermogenic adipose tissue in mice.


The sympathetic nervous system innervates peripheral organs to regulate their function and maintain homeostasis, whereas target cells also produce neurotrophic factors to promote sympathetic innervation(1,2). The molecular basis of this bi-directional communication remains to be fully determined. Here we use thermogenic adipose tissue from mice as a model system to show that T cells, specifically gamma delta T cells, have a crucial role in promoting sympathetic innervation, at least in part by driving the expression of TGF beta 1 in parenchymal cells via the IL-17 receptor C (IL-17RC). Ablation of IL-17RC specifically in adipose tissue reduces expression of TGF beta 1 in adipocytes, impairs local sympathetic innervation and causes obesity and other metabolic phenotypes that are consistent with defective thermogenesis  innervation can be fully rescued by restoring TGF beta 1 expression. Ablating gamma delta tau cells and the IL-17RC signalling pathway also impairs sympathetic innervation in other tissues such as salivary glands. These findings demonstrate coordination between T cells and parenchymal cells to regulate sympathetic innervation.


  
Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass 期刊论文
NATURE, 2020, 578 (7796) : 559-+
作者:  Papai, Gabor;  Frechard, Alexandre;  Kolesnikova, Olga;  Crucifix, Corinne;  Schultz, Patrick;  Ben-Shem, Adam
收藏  |  浏览/下载:32/0  |  提交时间:2020/07/03

Strain-hardening (the increase of flow stress with plastic strain) is the most important phenomenon in the mechanical behaviour of engineering alloys because it ensures that flow is delocalized, enhances tensile ductility and inhibits catastrophic mechanical failure(1,2). Metallic glasses (MGs) lack the crystallinity of conventional engineering alloys, and some of their properties-such as higher yield stress and elastic strain limit(3)-are greatly improved relative to their crystalline counterparts. MGs can have high fracture toughness and have the highest known '  damage tolerance'  (defined as the product of yield stress and fracture toughness)(4) among all structural materials. However, the use of MGs in structural applications is largely limited by the fact that they show strain-softening instead of strain-hardening  this leads to extreme localization of plastic flow in shear bands, and is associated with early catastrophic failure in tension. Although rejuvenation of an MG (raising its energy to values that are typical of glass formation at a higher cooling rate) lowers its yield stress, which might enable strain-hardening(5), it is unclear whether sufficient rejuvenation can be achieved in bulk samples while retaining their glassy structure. Here we show that plastic deformation under triaxial compression at room temperature can rejuvenate bulk MG samples sufficiently to enable strain-hardening through a mechanism that has not been previously observed in the metallic state. This transformed behaviour suppresses shear-banding in bulk samples in normal uniaxial (tensile or compressive) tests, prevents catastrophic failure and leads to higher ultimate flow stress. The rejuvenated MGs are stable at room temperature and show exceptionally efficient strain-hardening, greatly increasing their potential use in structural applications.


Bulk metallic glasses can acquire the ability to strain-harden through a mechanical rejuvenation treatment at room temperature that retains their non-crystalline structure.


  
Establishment and heteroblasty of Acacia koa in canopy gaps 期刊论文
FOREST ECOLOGY AND MANAGEMENT, 2019, 453
作者:  Rose, Kyle M. E.;  Friday, James B.;  Jacobs, Douglass F.
收藏  |  浏览/下载:22/0  |  提交时间:2020/02/17
Gap silviculture  Growth-survival trade-off  Heteroblasty  Irradiance  Koa  Rust  Shade tolerance  
Contribution of leaf anatomical traits to leaf mass per area among canopy layers for five coexisting broadleaf species across shade tolerances at a regional scale 期刊论文
FOREST ECOLOGY AND MANAGEMENT, 2019, 452
作者:  Zhang, Xueshuang;  Jin, Guangze;  Liu, Zhili
收藏  |  浏览/下载:15/0  |  提交时间:2019/11/27
Shade tolerance  Canopy layer  Leaf mass per area  Palisade tissue thickness  Length of minor veins per unit area  Epidermis thickness  
Pathogen exposure disrupts an organism's ability to cope with thermal stress 期刊论文
GLOBAL CHANGE BIOLOGY, 2019, 25 (11) : 3893-3905
作者:  Hector, Tobias E.;  Sgro, Carla M.;  Hall, Matthew D.
收藏  |  浏览/下载:17/0  |  提交时间:2019/11/27
aquatic ectotherm  coevolution  CTmax  GxG  heating rate  ramping rate  thermal tolerance  
Nitrogen limitation inhibits marine diatom adaptation to high temperatures 期刊论文
ECOLOGY LETTERS, 2019, 22 (11) : 1860-1869
作者:  Aranguren-Gassis, Maria;  Kremer, Colin T.;  Klausmeier, Christopher A.;  Litchman, Elena
收藏  |  浏览/下载:14/0  |  提交时间:2019/11/27
Adaptation  climate change  diatoms  evolutionary rescue  temperature-nutrients interaction  thermal tolerance  trade-offs  warming  evolutionary rescue  
Rethinking false spring risk 期刊论文
GLOBAL CHANGE BIOLOGY, 2019, 25 (7) : 2209-2220
作者:  Chamberlain, Catherine J.;  Cook, Benjamin I.;  de Cortazar-Atauri, Inaki Garcia;  Wolkovich, Elizabeth M.
收藏  |  浏览/下载:14/0  |  提交时间:2019/11/27
climate change  false spring  forest communities  freezing tolerance  phenology  
Interactive effects of CO2 and soil water treatments on growth and biomass allocation in pines and spruces 期刊论文
FOREST ECOLOGY AND MANAGEMENT, 2019, 442: 21-33
作者:  Major, John E.;  Mosseler, Alex
收藏  |  浏览/下载:12/0  |  提交时间:2019/11/26
Biomass allocation  Elevated CO2  Fitness  Growth  Pine  Shade tolerance  Soil moisture stress  Spruce