GSTDTAP

浏览/检索结果: 共16条,第1-10条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
Abrupt increase in harvested forest area over Europe after 2015 期刊论文
NATURE, 2020, 583 (7814) : 72-+
作者:  Guido Ceccherini;  Gregory Duveiller;  Giacomo Grassi;  Guido Lemoine;  Valerio Avitabile;  Roberto Pilli;  Alessandro Cescatti
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/06

Fine-scale satellite data are used to quantify forest harvest rates in 26 European countries, finding an increase in harvested forest area of 49% and an increase in biomass loss of 69% between 2011-2015 and 2016-2018.


Forests provide a series of ecosystem services that are crucial to our society. In the European Union (EU), forests account for approximately 38% of the total land surface(1). These forests are important carbon sinks, and their conservation efforts are vital for the EU'  s vision of achieving climate neutrality by 2050(2). However, the increasing demand for forest services and products, driven by the bioeconomy, poses challenges for sustainable forest management. Here we use fine-scale satellite data to observe an increase in the harvested forest area (49 per cent) and an increase in biomass loss (69 per cent) over Europe for the period of 2016-2018 relative to 2011-2015, with large losses occurring on the Iberian Peninsula and in the Nordic and Baltic countries. Satellite imagery further reveals that the average patch size of harvested area increased by 34 per cent across Europe, with potential effects on biodiversity, soil erosion and water regulation. The increase in the rate of forest harvest is the result of the recent expansion of wood markets, as suggested by econometric indicators on forestry, wood-based bioenergy and international trade. If such a high rate of forest harvest continues, the post-2020 EU vision of forest-based climate mitigation may be hampered, and the additional carbon losses from forests would require extra emission reductions in other sectors in order to reach climate neutrality by 2050(3).


  
International evaluation of an AI system for breast cancer screening 期刊论文
NATURE, 2020, 577 (7788) : 89-+
作者:  McKinney, Scott Mayer;  Sieniek, Marcin;  Godbole, Varun;  Godwin, Jonathan;  Antropova, Natasha;  Ashrafian, Hutan;  Back, Trevor;  Chesus, Mary;  Corrado, Greg C.;  Darzi, Ara;  Etemadi, Mozziyar;  Garcia-Vicente, Florencia;  Gilbert, Fiona J.;  Halling-Brown, Mark;  Hassabis, Demis;  Jansen, Sunny;  Karthikesalingam, Alan;  Kelly, Christopher J.;  King, Dominic;  Ledsam, Joseph R.;  Melnick, David;  Mostofi, Hormuz;  Peng, Lily;  Reicher, Joshua Jay;  Romera-Paredes, Bernardino;  Sidebottom, Richard;  Suleyman, Mustafa;  Tse, Daniel;  Young, Kenneth C.;  De Fauw, Jeffrey;  Shetty, Shravya
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

Screening mammography aims to identify breast cancer at earlier stages of the disease, when treatment can be more successful(1). Despite the existence of screening programmes worldwide, the interpretation of mammograms is affected by high rates of false positives and false negatives(2). Here we present an artificial intelligence (AI) system that is capable of surpassing human experts in breast cancer prediction. To assess its performance in the clinical setting, we curated a large representative dataset from the UK and a large enriched dataset from the USA. We show an absolute reduction of 5.7% and 1.2% (USA and UK) in false positives and 9.4% and 2.7% in false negatives. We provide evidence of the ability of the system to generalize from the UK to the USA. In an independent study of six radiologists, the AI system outperformed all of the human readers: the area under the receiver operating characteristic curve (AUC-ROC) for the AI system was greater than the AUC-ROC for the average radiologist by an absolute margin of 11.5%. We ran a simulation in which the AI system participated in the double-reading process that is used in the UK, and found that the AI system maintained non-inferior performance and reduced the workload of the second reader by 88%. This robust assessment of the AI system paves the way for clinical trials to improve the accuracy and efficiency of breast cancer screening.


  
Structure of the human metapneumovirus polymerase phosphoprotein complex 期刊论文
NATURE, 2020, 577 (7789) : 275-+
作者:  Pan, Junhua;  Qian, Xinlei;  Lattmann, Simon;  El Sahili, Abbas;  Yeo, Tiong Han;  Jia, Huan;  Cressey, Tessa;  Ludeke, Barbara;  Noton, Sarah;  Kalocsay, Marian;  Fearns, Rachel;  Lescar, Julien
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) cause severe respiratory diseases in infants and elderly adults(1). No vaccine or effective antiviral therapy currently exists to control RSV or HMPV infections. During viral genome replication and transcription, the tetrameric phosphoprotein P serves as a crucial adaptor between the ribonucleoprotein template and the L protein, which has RNA-dependent RNA polymerase (RdRp), GDP polyribonucleotidyltransferase and cap-specific methyltransferase activities(2,3). How P interacts with L and mediates the association with the free form of N and with the ribonucleoprotein is not clear for HMPV or other major human pathogens, including the viruses that cause measles, Ebola and rabies. Here we report a cryo-electron microscopy reconstruction that shows the ring-shaped structure of the polymerase and capping domains of HMPV-L bound to a tetramer of P. The connector and methyltransferase domains of L are mobile with respect to the core. The putative priming loop that is important for the initiation of RNA synthesis is fully retracted, which leaves space in the active-site cavity for RNA elongation. P interacts extensively with the N-terminal region of L, burying more than 4,016 angstrom(2) of the molecular surface area in the interface. Two of the four helices that form the coiled-coil tetramerization domain of P, and long C-terminal extensions projecting from these two helices, wrap around the L protein in a manner similar to tentacles. The structural versatility of the four P protomers-which are largely disordered in their free state-demonstrates an example of a '  folding-upon-partner-binding'  mechanism for carrying out P adaptor functions. The structure shows that P has the potential to modulate multiple functions of L and these results should accelerate the design of specific antiviral drugs.


  
Monumental architecture at Aguada Fenix and the rise of Maya civilization 期刊论文
NATURE, 2020
作者:  Bedding, Timothy R.;  Murphy, Simon J.;  Hey, Daniel R.;  Huber, Daniel;  Li, Tanda;  Smalley, Barry;  Stello, Dennis;  White, Timothy R.;  Ball, Warrick H.;  Chaplin, William J.;  Colman, Isabel L.;  Fuller, Jim;  Gaidos, Eric;  Harbeck, Daniel R.;  Hermes, J. J.;  Holdsworth, Daniel L.;  Li, Gang;  Li, Yaguang;  Mann, Andrew W.;  Reese, Daniel R.;  Sekaran, Sanjay;  Yu, Jie;  Antoci, Victoria;  Bergmann, Christoph;  Brown, Timothy M.;  Howard, Andrew W.;  Ireland, Michael J.;  Isaacson, Howard;  Jenkins, Jon M.;  Kjeldsen, Hans;  McCully, Curtis;  Rabus, Markus;  Rains, Adam D.;  Ricker, George R.;  Tinney, Christopher G.;  Vanderspek, Roland K.
收藏  |  浏览/下载:30/0  |  提交时间:2020/07/03

Archaeologists have traditionally thought that the development of Maya civilization was gradual, assuming that small villages began to emerge during the Middle Preclassic period (1000-350 bc  dates are calibrated throughout) along with the use of ceramics and the adoption of sedentism(1). Recent finds of early ceremonial complexes are beginning to challenge this model. Here we describe an airborne lidar survey and excavations of the previously unknown site of Aguada Fenix (Tabasco, Mexico) with an artificial plateau, which measures 1,400 m in length and 10 to 15 m in height and has 9 causeways radiating out from it. We dated this construction to between 1000 and 800 bc using a Bayesian analysis of radiocarbon dates. To our knowledge, this is the oldest monumental construction ever found in the Maya area and the largest in the entire pre-Hispanic history of the region. Although the site exhibits some similarities to the earlier Olmec centre of San Lorenzo, the community of Aguada Fenix probably did not have marked social inequality comparable to that of San Lorenzo. Aguada Fenix and other ceremonial complexes of the same period suggest the importance of communal work in the initial development of Maya civilization.


Lidar survey of the Maya lowlands uncovers the monumental site of Aguada Fenix, which dates to around 1000-800 bc and points to the role of communal construction in the development of Maya civilization.


  
An acute immune response underlies the benefit of cardiac stem cell therapy 期刊论文
NATURE, 2020, 577 (7790) : 405-+
作者:  Schmacke, Niklas A.;  Hornung, Veit
收藏  |  浏览/下载:20/0  |  提交时间:2020/07/03

Clinical trials using adult stem cells to regenerate damaged heart tissue continue to this day(1,2), despite ongoing questions of efficacy and a lack of mechanistic understanding of the underlying biological effect(3). The rationale for these cell therapy trials is derived from animal studies that show a modest but reproducible improvement in cardiac function in models of cardiac ischaemic injury(4,5). Here we examine the mechanistic basis for cell therapy in mice after ischaemia-reperfusion injury, and find that-although heart function is enhanced-it is not associated with the production of new cardiomyocytes. Cell therapy improved heart function through an acute sterile immune response characterized by the temporal and regional induction of CCR2(+) and CX3CR1(+) macrophages. Intracardiac injection of two distinct types of adult stem cells, cells killed by freezing and thawing or a chemical inducer of the innate immune response all induced a similar regional accumulation of CCR2(+) and CX3CR1(+) macrophages, and provided functional rejuvenation to the heart after ischaemia-reperfusion injury. This selective macrophage response altered the activity of cardiac fibroblasts, reduced the extracellular matrix content in the border zone and enhanced the mechanical properties of the injured area. The functional benefit of cardiac cell therapy is thus due to an acute inflammatory-based wound-healing response that rejuvenates the infarcted area of the heart.


  
Entanglement-based secure quantum cryptography over 1,120 kilometres 期刊论文
NATURE, 2020
作者:  Paldi, Flora;  Alver, Bonnie;  Robertson, Daniel;  Schalbetter, Stephanie A.;  Kerr, Alastair;  Kelly, David A.;  Baxter, Jonathan;  Neale, Matthew J.;  Marston, Adele L.
收藏  |  浏览/下载:48/0  |  提交时间:2020/07/03

An efficient entanglement-based quantum key distribution is sent from the Micius satellite to two ground observatories 1,120 kilometres apart to establish secure quantum cryptography for the exchange ofquantum keys.


Quantum key distribution (QKD)(1-3)is a theoretically secure way of sharing secret keys between remote users. It has been demonstrated in a laboratory over a coiled optical fibre up to 404 kilometres long(4-7). In the field, point-to-point QKD has been achieved from a satellite to a ground station up to 1,200 kilometres away(8-10). However, real-world QKD-based cryptography targets physically separated users on the Earth, for which the maximum distance has been about 100 kilometres(11,12). The use of trusted relays can extend these distances from across a typical metropolitan area(13-16)to intercity(17)and even intercontinental distances(18). However, relays pose security risks, which can be avoided by using entanglement-based QKD, which has inherent source-independent security(19,20). Long-distance entanglement distribution can be realized using quantum repeaters(21), but the related technology is still immature for practical implementations(22). The obvious alternative for extending the range of quantum communication without compromising its security is satellite-based QKD, but so far satellite-based entanglement distribution has not been efficient(23)enough to support QKD. Here we demonstrate entanglement-based QKD between two ground stations separated by 1,120 kilometres at a finite secret-key rate of 0.12 bits per second, without the need for trusted relays. Entangled photon pairs were distributed via two bidirectional downlinks from the Micius satellite to two ground observatories in Delingha and Nanshan in China. The development of a high-efficiency telescope and follow-up optics crucially improved the link efficiency. The generated keys are secure for realistic devices, because our ground receivers were carefully designed to guarantee fair sampling and immunity to all known side channels(24,25). Our method not only increases the secure distance on the ground tenfold but also increases the practical security of QKD to an unprecedented level.


  
Iron-based binary ferromagnets for transverse thermoelectric conversion 期刊论文
NATURE, 2020, 581 (7806) : 53-+
作者:  Grun, Rainer;  Pike, Alistair;  McDermott, Frank;  Eggins, Stephen;  Mortimer, Graham;  Aubert, Maxime;  Kinsley, Lesley;  Joannes-Boyau, Renaud;  Rumsey, Michael;  Denys, Christiane;  Brink, James;  Clark, Tara;  Stringer, Chris
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

Aluminium- and gallium-doped iron compounds show a large anomalous Nernst effect owing to a topological electronic structure, and their films are potentially suitable for designing low-cost, flexible microelectronic thermoelectric generators.


Thermoelectric generation using the anomalous Nernst effect (ANE) has great potential for application in energy harvesting technology because the transverse geometry of the Nernst effect should enable efficient, large-area and flexible coverage of a heat source. For such applications to be viable, substantial improvements will be necessary not only for their performance but also for the associated material costs, safety and stability. In terms of the electronic structure, the anomalous Nernst effect (ANE) originates from the Berry curvature of the conduction electrons near the Fermi energy(1,2). To design a large Berry curvature, several approaches have been considered using nodal points and lines in momentum space(3-10). Here we perform a high-throughput computational search and find that 25 percent doping of aluminium and gallium in alpha iron, a naturally abundant and low-cost element, dramatically enhances the ANE by a factor of more than ten, reaching about 4 and 6 microvolts per kelvin at room temperature, respectively, close to the highest value reported so far. The comparison between experiment and theory indicates that the Fermi energy tuning to the nodal web-a flat band structure made of interconnected nodal lines-is the key for the strong enhancement in the transverse thermoelectric coefficient, reaching a value of about 5 amperes per kelvin per metre with a logarithmic temperature dependence. We have also succeeded in fabricating thin films that exhibit a large ANE at zero field, which could be suitable for designing low-cost, flexible microelectronic thermoelectric generators(11-13).


  
Feedback generates a second receptive field in neurons of the visual cortex 期刊论文
NATURE, 2020
作者:  Shi, Enzheng;  Yuan, Biao;  Shiring, Stephen B.;  Gao, Yao;  Akriti;  Guo, Yunfan;  Su, Cong;  Lai, Minliang;  Yang, Peidong;  Kong, Jing;  Savoie, Brett M.;  Yu, Yi;  Dou, Letian
收藏  |  浏览/下载:45/0  |  提交时间:2020/07/03

Animals sense the environment through pathways that link sensory organs to the brain. In the visual system, these feedforward pathways define the classical feedforward receptive field (ffRF), the area in space in which visual stimuli excite a neuron(1). The visual system also uses visual context-the visual scene surrounding a stimulus-to predict the content of the stimulus(2), and accordingly, neurons have been identified that are excited by stimuli outside their ffRF(3-8). However, the mechanisms that generate excitation to stimuli outside the ffRF are unclear. Here we show that feedback projections onto excitatory neurons in the mouse primary visual cortex generate a second receptive field that is driven by stimuli outside the ffRF. The stimulation of this feedback receptive field (fbRF) elicits responses that are slower and are delayed in comparison with those resulting from the stimulation of the ffRF. These responses are preferentially reduced by anaesthesia and by silencing higher visual areas. Feedback inputs from higher visual areas have scattered receptive fields relative to their putative targets in the primary visual cortex, which enables the generation of the fbRF. Neurons with fbRFs are located in cortical layers that receive strong feedback projections and are absent in the main input layer, which is consistent with a laminar processing hierarchy. The observation that large, uniform stimuli-which cover both the fbRF and the ffRF-suppress these responses indicates that the fbRF and the ffRF are mutually antagonistic. Whereas somatostatin-expressing inhibitory neurons are driven by these large stimuli, inhibitory neurons that express parvalbumin and vasoactive intestinal peptide have mutually antagonistic fbRF and ffRF, similar to excitatory neurons. Feedback projections may therefore enable neurons to use context to estimate information that is missing from the ffRF and to report differences in stimulus features across visual space, regardless of whether excitation occurs inside or outside the ffRF. By complementing the ffRF, the fbRF that we identify here could contribute to predictive processing.


Feedback projections onto neurons of the mouse primary visual cortex generate a second excitatory receptive field that is driven by stimuli outside of the classical feedforward receptive field, with responses mediated by higher visual areas.


  
Global conservation of species' niches 期刊论文
NATURE, 2020, 580 (7802) : 232-+
作者:  Guo, Xiaoyan;  Aviles, Giovanni;  Liu, Yi;  Tian, Ruilin;  Unger, Bret A.;  Lin, Yu-Hsiu T.;  Wiita, Arun P.;  Xu, Ke;  Correia, M. Almira;  Kampmann, Martin
收藏  |  浏览/下载:29/0  |  提交时间:2020/07/03

Environmental change is rapidly accelerating, and many species will need to adapt to survive(1). Ensuring that protected areas cover populations across a broad range of environmental conditions could safeguard the processes that lead to such adaptations(1-3). However, international conservation policies have largely neglected these considerations when setting targets for the expansion of protected areas(4). Here we show that-of 19,937 vertebrate species globally(5-8)-the representation of environmental conditions across their habitats in protected areas (hereafter, niche representation) is inadequate for 4,836 (93.1%) amphibian, 8,653 (89.5%) bird and 4,608 (90.9%) terrestrial mammal species. Expanding existing protected areas to cover these gaps would encompass 33.8% of the total land surface-exceeding the current target of 17% that has been adopted by governments. Priority locations for expanding the system of protected areas to improve niche representation occur in global biodiversity hotspots(9), including Colombia, Papua New Guinea, South Africa and southwest China, as well as across most of the major land masses of the Earth. Conversely, we also show that planning for the expansion of protected areas without explicitly considering environmental conditions would marginally reduce the land area required to 30.7%, but that this would lead to inadequate niche representation for 7,798 (39.1%) species. As the governments of the world prepare to renegotiate global conservation targets, policymakers have the opportunity to help to maintain the adaptive potential of species by considering niche representation within protected areas(1,2).


Protected areas would need to expand to 33.8% of the total land surface to adequately represent environmental conditions across the habitats of amphibians, birds and terrestrial mammals, far exceeding the current 17% target.


  
A distributional code for value in dopamine-based reinforcement learning 期刊论文
NATURE, 2020, 577 (7792) : 671-+
作者:  House, Robert A.;  Maitra, Urmimala;  Perez-Osorio, Miguel A.;  Lozano, Juan G.;  Jin, Liyu;  Somerville, James W.;  Duda, Laurent C.;  Nag, Abhishek;  Walters, Andrew;  Zhou, Ke-Jin;  Roberts, Matthew R.;  Bruce, Peter G.
收藏  |  浏览/下载:61/0  |  提交时间:2020/07/03

Since its introduction, the reward prediction error theory of dopamine has explained a wealth of empirical phenomena, providing a unifying framework for understanding the representation of reward and value in the brain(1-3). According to the now canonical theory, reward predictions are represented as a single scalar quantity, which supports learning about the expectation, or mean, of stochastic outcomes. Here we propose an account of dopamine-based reinforcement learning inspired by recent artificial intelligence research on distributional reinforcement learning(4-6). We hypothesized that the brain represents possible future rewards not as a single mean, but instead as a probability distribution, effectively representing multiple future outcomes simultaneously and in parallel. This idea implies a set of empirical predictions, which we tested using single-unit recordings from mouse ventral tegmental area. Our findings provide strong evidence for a neural realization of distributional reinforcement learning.


Analyses of single-cell recordings from mouse ventral tegmental area are consistent with a model of reinforcement learning in which the brain represents possible future rewards not as a single mean of stochastic outcomes, as in the canonical model, but instead as a probability distribution.