GSTDTAP

浏览/检索结果: 共21条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
辐射冷却膜技术突破有望为全球变暖问题提供解决方案 快报文章
气候变化快报,2023年第20期
作者:  秦冰雪 董利苹
Microsoft Word(28Kb)  |  收藏  |  浏览/下载:521/0  |  提交时间:2023/10/20
Thin Lamellar Films  Enhanced Mechanical Properties  Durable Radiative Cooling  
Nature:地球深部矿物力学特性揭示地球板块构造运动机制 快报文章
地球科学快报,2022年第07期
作者:  张树良
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:747/0  |  提交时间:2022/04/08
mechanical properties of material  plate tectonics  cubic CaSiO3 perovskite  
Archimedean lattices emerge in template-directed eutectic solidification 期刊论文
NATURE, 2020, 577 (7790) : 355-+
作者:  Subbaraman, Nidhi;  Viglione, Giuliana
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

Template-directed assembly has been shown to yield a broad diversity of highly ordered mesostructures(1),(2), which in a few cases exhibit symmetries not present in the native material(3-5). However, this technique has not yet been applied to eutectic materials, which underpin many modern technologies ranging from high-performance turbine blades to solder alloys. Here we use directional solidification of a simple AgCl-KCl lamellar eutectic material within a pillar template to show that interactions of the material with the template lead to the emergence of a set of microstructures that are distinct from the eutectic'  s native lamellar structure and the template'  s hexagonal lattice structure. By modifying the solidification rate of this material-template system, trefoil, quatrefoil, cinquefoil and hexafoil mesostructures with submicrometre-size features are realized. Phase-field simulations suggest that these mesostructures appear owing to constraints imposed on diffusion by the hexagonally arrayed pillar template. We note that the trefoil and hexafoil patterns resemble Archimedean honeycomb and square-hexagonal-dodecagonal lattices(6), respectively. We also find that by using monolayer colloidal crystals as templates, a variety of eutectic mesostructures including trefoil and hexafoil are observed, the former resembling the Archimedean kagome lattice. Potential emerging applications for the structures provided by templated eutectics include non-reciprocal metasurfaces(7), magnetic spin-ice systems(8,9), and micro- and nano-lattices with enhanced mechanical properties(10,11).


  
An acute immune response underlies the benefit of cardiac stem cell therapy 期刊论文
NATURE, 2020, 577 (7790) : 405-+
作者:  Schmacke, Niklas A.;  Hornung, Veit
收藏  |  浏览/下载:40/0  |  提交时间:2020/07/03

Clinical trials using adult stem cells to regenerate damaged heart tissue continue to this day(1,2), despite ongoing questions of efficacy and a lack of mechanistic understanding of the underlying biological effect(3). The rationale for these cell therapy trials is derived from animal studies that show a modest but reproducible improvement in cardiac function in models of cardiac ischaemic injury(4,5). Here we examine the mechanistic basis for cell therapy in mice after ischaemia-reperfusion injury, and find that-although heart function is enhanced-it is not associated with the production of new cardiomyocytes. Cell therapy improved heart function through an acute sterile immune response characterized by the temporal and regional induction of CCR2(+) and CX3CR1(+) macrophages. Intracardiac injection of two distinct types of adult stem cells, cells killed by freezing and thawing or a chemical inducer of the innate immune response all induced a similar regional accumulation of CCR2(+) and CX3CR1(+) macrophages, and provided functional rejuvenation to the heart after ischaemia-reperfusion injury. This selective macrophage response altered the activity of cardiac fibroblasts, reduced the extracellular matrix content in the border zone and enhanced the mechanical properties of the injured area. The functional benefit of cardiac cell therapy is thus due to an acute inflammatory-based wound-healing response that rejuvenates the infarcted area of the heart.


  
The architecture of the Gram-positive bacterial cell wall 期刊论文
NATURE, 2020, 582 (7811) : 294-+
作者:  Farquharson, Jamie I.;  Amelung, Falk
收藏  |  浏览/下载:41/0  |  提交时间:2020/07/03

The primary structural component of the bacterial cell wall is peptidoglycan, which is essential for viability and the synthesis of which is the target for crucial antibiotics(1,2). Peptidoglycan is a single macromolecule made of glycan chains crosslinked by peptide side branches that surrounds the cell, acting as a constraint to internal turgor(1,3). In Gram-positive bacteria, peptidoglycan is tens of nanometres thick, generally portrayed as a homogeneous structure that provides mechanical strength(4-6). Here we applied atomic force microscopy(7-12) to interrogate the morphologically distinct Staphylococcus aureus and Bacillus subtilis species, using live cells and purified peptidoglycan. The mature surface of live cells is characterized by a landscape of large (up to 60 nm in diameter), deep (up to 23 nm) pores constituting a disordered gel of peptidoglycan. The inner peptidoglycan surface, consisting of more nascent material, is much denser, with glycan strand spacing typically less than 7 nm. The inner surface architecture is location dependent  the cylinder of B. subtilis has dense circumferential orientation, while in S. aureus and division septa for both species, peptidoglycan is dense but randomly oriented. Revealing the molecular architecture of the cell envelope frames our understanding of its mechanical properties and role as the environmental interface(13,14), providing information complementary to traditional structural biology approaches.


Using high-resolution atomic force microscopy of live cells, the authors present an updated view of the cell walls of both Staphylococcus aureus and Bacillus subtilis.


  
Short-range order and its impact on the CrCoNi medium-entropy alloy 期刊论文
NATURE, 2020, 581 (7808) : 283-+
作者:  Tan, Hwei-Ee;  Sisti, Alexander C.;  Jin, Hao;  Vignovich, Martin;  Villavicencio, Miguel;  Tsang, Katherine S.;  Goffer, Yossef;  Zuker, Charles S.
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/03

Traditional metallic alloys are mixtures of elements in which the atoms of minority species tend to be distributed randomly if they are below their solubility limit, or to form secondary phases if they are above it. The concept of multiple-principal-element alloys has recently expanded this view, as these materials are single-phase solid solutions of generally equiatomic mixtures of metallic elements. This group of materials has received much interest owing to their enhanced mechanical properties(1-5). They are usually called medium-entropy alloys in ternary systems and high-entropy alloys in quaternary or quinary systems, alluding to their high degree of configurational entropy. However, the question has remained as to how random these solid solutions actually are, with the influence of short-range order being suggested in computational simulations but not seen experimentally(6,7). Here we report the observation, using energy-filtered transmission electron microscopy, of structural features attributable to short-range order in the CrCoNi medium-entropy alloy. Increasing amounts of such order give rise to both higher stacking-fault energy and hardness. These findings suggest that the degree of local ordering at the nanometre scale can be tailored through thermomechanical processing, providing a new avenue for tuning the mechanical properties of medium- and high-entropy alloys.


Metal alloys consisting of three or more major elemental components show enhanced mechanical properties, which are now shown to be correlated with short-range order observed with electron microscopy.


  
Layered nanocomposites by shear-flow-induced alignment of nanosheets 期刊论文
NATURE, 2020, 580 (7802) : 210-+
作者:  Rollie, Clare;  Chevallereau, Anne;  Watson, Bridget N. J.;  Chyou, Te-yuan;  Fradet, Olivier;  McLeod, Isobel;  Fineran, Peter C.;  Brown, Chris M.;  Gandon, Sylvain;  Westra, Edze R.
收藏  |  浏览/下载:61/0  |  提交时间:2020/07/03

Layered nanocomposites fabricated using a continuous and scalable process achieve properties exceeding those of natural nacre, the result of stiffened matrix polymer chains confined between highly aligned nanosheets.


Biological materials, such as bones, teeth and mollusc shells, are well known for their excellent strength, modulus and toughness(1-3). Such properties are attributed to the elaborate layered microstructure of inorganic reinforcing nanofillers, especially two-dimensional nanosheets or nanoplatelets, within a ductile organic matrix(4-6). Inspired by these biological structures, several assembly strategies-including layer-by-layer(4,7,8), casting(9,10), vacuum filtration(11-13) and use of magnetic fields(14,15)-have been used to develop layered nanocomposites. However, how to produce ultrastrong layered nanocomposites in a universal, viable and scalable manner remains an open issue. Here we present a strategy to produce nanocomposites with highly ordered layered structures using shear-flow-induced alignment of two-dimensional nanosheets at an immiscible hydrogel/oil interface. For example, nanocomposites based on nanosheets of graphene oxide and clay exhibit a tensile strength of up to 1,215 +/- 80 megapascals and a Young'  s modulus of 198.8 +/- 6.5 gigapascals, which are 9.0 and 2.8 times higher, respectively, than those of natural nacre (mother of pearl). When nanosheets of clay are used, the toughness of the resulting nanocomposite can reach 36.7 +/- 3.0 megajoules per cubic metre, which is 20.4 times higher than that of natural nacre  meanwhile, the tensile strength is 1,195 +/- 60 megapascals. Quantitative analysis indicates that the well aligned nanosheets form a critical interphase, and this results in the observed mechanical properties. We consider that our strategy, which could be readily extended to align a variety of two-dimensional nanofillers, could be applied to a wide range of structural composites and lead to the development of high-performance composites.


  
An engineered PET depolymerase to break down and recycle plastic bottles 期刊论文
NATURE, 2020, 580 (7802) : 216-+
作者:  Zhao, Evan Wenbo;  Liu, Tao;  Jonsson, Erlendur;  Lee, Jeongjae;  Temprano, Israel;  Jethwa, Rajesh B.;  Wang, Anqi;  Smith, Holly;  Carretero-Gonzalez, Javier;  Song, Qilei;  Grey, Clare P.
收藏  |  浏览/下载:103/0  |  提交时间:2020/07/03

Present estimates suggest that of the 359 million tons of plastics produced annually worldwide(1), 150-200 million tons accumulate in landfill or in the natural environment(2). Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging(3). The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties(4). Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units-which reduce chain mobility-PET is a polyester that is extremely difficult to hydrolyse(5). Several PET hydrolase enzymes have been reported, but show limited productivity(6,7). Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams of terephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme(8,9) from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme(10)) and related improved variants(11-14) that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy.


Computer-aided engineering produces improvements to an enzyme that breaks down poly(ethylene terephthalate) (PET) into its constituent monomers, which are used to synthesize PET of near-petrochemical grade that can be further processed into bottles.


  
Centrosome anchoring regulates progenitor properties and cortical formation 期刊论文
NATURE, 2020
作者:  Guo, Xiaoyan;  Aviles, Giovanni;  Liu, Yi;  Tian, Ruilin;  Unger, Bret A.;  Lin, Yu-Hsiu T.;  Wiita, Arun P.;  Xu, Ke;  Correia, M. Almira;  Kampmann, Martin
收藏  |  浏览/下载:43/0  |  提交时间:2020/07/03

CEP83-mediated anchoring of the centrosome to the apical membrane in radial glial progenitor cells regulates their mechanical properties and thereby influences the size and configuration of the mammalian cortex.


Radial glial progenitor cells (RGPs) are the major neural progenitor cells that generate neurons and glia in the developing mammalian cerebral cortex(1-4). In RGPs, the centrosome is positioned away from the nucleus at the apical surface of the ventricular zone of the cerebral cortex(5-8). However, the molecular basis and precise function of this distinctive subcellular organization of the centrosome are largely unknown. Here we show in mice that anchoring of the centrosome to the apical membrane controls the mechanical properties of cortical RGPs, and consequently their mitotic behaviour and the size and formation of the cortex. The mother centriole in RGPs develops distal appendages that anchor it to the apical membrane. Selective removal of centrosomal protein 83 (CEP83) eliminates these distal appendages and disrupts the anchorage of the centrosome to the apical membrane, resulting in the disorganization of microtubules and stretching and stiffening of the apical membrane. The elimination of CEP83 also activates the mechanically sensitive yes-associated protein (YAP) and promotes the excessive proliferation of RGPs, together with a subsequent overproduction of intermediate progenitor cells, which leads to the formation of an enlarged cortex with abnormal folding. Simultaneous elimination of YAP suppresses the cortical enlargement and folding that is induced by the removal of CEP83. Together, these results indicate a previously unknown role of the centrosome in regulating the mechanical features of neural progenitor cells and the size and configuration of the mammalian cerebral cortex.


  
Stiffness of the human foot and evolution of the transverse arch 期刊论文
NATURE, 2020
作者:  Fujioka, Yuko;  Alam, Jahangir Md.;  Noshiro, Daisuke;  Mouri, Kazunari;  Ando, Toshio;  Okada, Yasushi;  May, Alexander I.;  Knorr, Roland L.;  Suzuki, Kuninori;  Ohsumi, Yoshinori;  Noda, Nobuo N.
收藏  |  浏览/下载:25/0  |  提交时间:2020/07/03

The transverse tarsal arch, acting through the inter-metatarsal tissues, is important for the longitudinal stiffness of the foot and its appearance is a key step in the evolution of human bipedalism.


The stiff human foot enables an efficient push-off when walking or running, and was critical for the evolution of bipedalism(1-6). The uniquely arched morphology of the human midfoot is thought to stiffen it(5-9), whereas other primates have flat feet that bend severely in the midfoot(7,10,11). However, the relationship between midfoot geometry and stiffness remains debated in foot biomechanics(12,13), podiatry(14,15) and palaeontology(4-6). These debates centre on the medial longitudinal arch(5,6) and have not considered whether stiffness is affected by the second, transverse tarsal arch of the human foot(16). Here we show that the transverse tarsal arch, acting through the inter-metatarsal tissues, is responsible for more than 40% of the longitudinal stiffness of the foot. The underlying principle resembles a floppy currency note that stiffens considerably when it curls transversally. We derive a dimensionless curvature parameter that governs the stiffness contribution of the transverse tarsal arch, demonstrate its predictive power using mechanical models of the foot and find its skeletal correlate in hominin feet. In the foot, the material properties of the inter-metatarsal tissues and the mobility of the metatarsals may additionally influence the longitudinal stiffness of the foot and thus the curvature-stiffness relationship of the transverse tarsal arch. By analysing fossils, we track the evolution of the curvature parameter among extinct hominins and show that a human-like transverse arch was a key step in the evolution of human bipedalism that predates the genus Homo by at least 1.5 million years. This renewed understanding of the foot may improve the clinical treatment of flatfoot disorders, the design of robotic feet and the study of foot function in locomotion.